wasmer/lib/spectests/build/spectests.rs
2019-07-10 14:41:15 -07:00

796 lines
28 KiB
Rust

//! This file will run at build time to autogenerate Rust tests based on
//! WebAssembly spec tests. It will convert the files indicated in TESTS
//! from "/spectests/{MODULE}.wast" to "/src/spectests/{MODULE}.rs".
use std::collections::HashMap;
use std::fs::File;
use std::path::PathBuf;
use std::{env, fs, io::Write};
use wabt::script::{Action, Command, CommandKind, ModuleBinary, ScriptParser, Value};
use wabt::wasm2wat;
static BANNER: &str = "// Rust test file autogenerated with cargo build (build/spectests.rs).
// Please do NOT modify it by hand, as it will be reset on next build.\n";
const TESTS: &[&str] = &[
"spectests/address.wast",
"spectests/align.wast",
"spectests/binary.wast",
"spectests/block.wast",
"spectests/br.wast",
"spectests/br_if.wast",
"spectests/br_table.wast",
"spectests/break_drop.wast",
"spectests/call.wast",
"spectests/call_indirect.wast",
"spectests/comments.wast",
"spectests/const_.wast",
"spectests/conversions.wast",
"spectests/custom.wast",
"spectests/data.wast",
"spectests/elem.wast",
"spectests/endianness.wast",
"spectests/exports.wast",
"spectests/f32_.wast",
"spectests/f32_bitwise.wast",
"spectests/f32_cmp.wast",
"spectests/f64_.wast",
"spectests/f64_bitwise.wast",
"spectests/f64_cmp.wast",
"spectests/fac.wast",
"spectests/float_exprs.wast",
"spectests/float_literals.wast",
"spectests/float_memory.wast",
"spectests/float_misc.wast",
"spectests/forward.wast",
"spectests/func.wast",
"spectests/func_ptrs.wast",
"spectests/get_local.wast",
"spectests/globals.wast",
"spectests/i32_.wast",
"spectests/i64_.wast",
"spectests/if_.wast",
"spectests/int_exprs.wast",
"spectests/int_literals.wast",
"spectests/labels.wast",
"spectests/left_to_right.wast",
"spectests/loop_.wast",
"spectests/memory.wast",
"spectests/memory_grow.wast",
"spectests/memory_redundancy.wast",
"spectests/memory_trap.wast",
"spectests/nop.wast",
"spectests/return_.wast",
"spectests/select.wast",
"spectests/set_local.wast",
"spectests/stack.wast",
"spectests/start.wast",
"spectests/store_retval.wast",
"spectests/switch.wast",
"spectests/tee_local.wast",
"spectests/token.wast",
"spectests/traps.wast",
"spectests/typecheck.wast",
"spectests/types.wast",
"spectests/unwind.wast",
#[cfg(feature = "llvm")]
"spectests/simd.wast",
];
static COMMON: &'static str = r##"
use std::{{f32, f64}};
use wabt::{{wat2wasm_with_features, Error as WabtError}};
use wasmer_runtime_core::import::ImportObject;
use wasmer_runtime_core::types::Value;
use wasmer_runtime_core::{{Instance, module::Module}};
use wasmer_runtime_core::error::Result;
use wasmer_runtime_core::vm::Ctx;
use wasmer_runtime_core::backend::Compiler;
static IMPORT_MODULE: &str = r#"
(module
(type $t0 (func (param i32)))
(type $t1 (func))
(func $print_i32 (export "print_i32") (type $t0) (param $lhs i32))
(func $print (export "print") (type $t1))
(table $table (export "table") 10 20 anyfunc)
(memory $memory (export "memory") 1 2)
(global $global_i32 (export "global_i32") i32 (i32.const 666)))
"#;
fn wat2wasm<S: AsRef<[u8]>>(
source: S,
) -> Result<Vec<u8>, WabtError> {
let mut features = wabt::Features::new();
features.enable_simd();
wabt::wat2wasm_with_features(source, features)
}
#[cfg(feature = "clif")]
fn get_compiler() -> impl Compiler {
use wasmer_clif_backend::CraneliftCompiler;
CraneliftCompiler::new()
}
#[cfg(feature = "llvm")]
fn get_compiler() -> impl Compiler {
use wasmer_llvm_backend::LLVMCompiler;
LLVMCompiler::new()
}
#[cfg(feature = "singlepass")]
fn get_compiler() -> impl Compiler {
use wasmer_singlepass_backend::SinglePassCompiler;
SinglePassCompiler::new()
}
#[cfg(not(any(feature = "llvm", feature = "clif", feature = "singlepass")))]
fn get_compiler() -> impl Compiler {
panic!("compiler not specified, activate a compiler via features");
use wasmer_clif_backend::CraneliftCompiler;
CraneliftCompiler::new()
}
pub fn generate_imports() -> ImportObject {
let wasm_binary = wat2wasm(IMPORT_MODULE.as_bytes()).expect("WAST not valid or malformed");
let module = wasmer_runtime_core::compile_with(&wasm_binary[..], &get_compiler())
.expect("WASM can't be compiled");
let instance = module
.instantiate(&ImportObject::new())
.expect("WASM can't be instantiated");
let mut imports = ImportObject::new();
imports.register("spectest", instance);
imports
}
/// Bit pattern of an f32 value:
/// 1-bit sign + 8-bit mantissa + 23-bit exponent = 32 bits
///
/// Bit pattern of an f64 value:
/// 1-bit sign + 11-bit mantissa + 52-bit exponent = 64 bits
///
/// NOTE: On some old platforms (PA-RISC, some MIPS) quiet NaNs (qNaN) have
/// their mantissa MSB unset and set for signaling NaNs (sNaN).
///
/// Links:
/// * https://en.wikipedia.org/wiki/Floating-point_arithmetic
/// * https://github.com/WebAssembly/spec/issues/286
/// * https://en.wikipedia.org/wiki/NaN
///
pub trait NaNCheck {
fn is_quiet_nan(&self) -> bool;
fn is_canonical_nan(&self) -> bool;
}
impl NaNCheck for f32 {
/// The MSB of the mantissa must be set for a NaN to be a quiet NaN.
fn is_quiet_nan(&self) -> bool {
let bit_mask = 0b1 << 22; // Used to check if 23rd bit is set, which is MSB of the mantissa
self.is_nan() && (self.to_bits() & bit_mask) == bit_mask
}
/// For a NaN to be canonical, its mantissa bits must all be unset
fn is_canonical_nan(&self) -> bool {
let bit_mask: u32 = 0b1____0000_0000____011_1111_1111_1111_1111_1111;
let masked_value = self.to_bits() ^ bit_mask;
masked_value == 0xFFFF_FFFF || masked_value == 0x7FFF_FFFF
}
}
impl NaNCheck for f64 {
/// The MSB of the mantissa must be set for a NaN to be a quiet NaN.
fn is_quiet_nan(&self) -> bool {
let bit_mask = 0b1 << 51; // Used to check if 52st bit is set, which is MSB of the mantissa
self.is_nan() && (self.to_bits() & bit_mask) == bit_mask
}
/// For a NaN to be canonical, its mantissa bits must all be unset
fn is_canonical_nan(&self) -> bool {
let bit_mask: u64 =
0b1____000_0000_0000____0111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111;
let masked_value = self.to_bits() ^ bit_mask;
masked_value == 0x7FFF_FFFF_FFFF_FFFF || masked_value == 0xFFF_FFFF_FFFF_FFFF
}
}
"##;
fn wabt2rust_type(v: &Value) -> String {
match v {
Value::I32(_v) => format!("i32"),
Value::I64(_v) => format!("i64"),
Value::F32(_v) => format!("f32"),
Value::F64(_v) => format!("f64"),
}
}
fn wabt2rust_type_destructure(v: &Value, placeholder: &str) -> String {
match v {
Value::I32(_v) => format!("Value::I32({})", placeholder),
Value::I64(_v) => format!("Value::I64({})", placeholder),
Value::F32(_v) => format!("Value::F32({})", placeholder),
Value::F64(_v) => format!("Value::F64({})", placeholder),
}
}
fn is_nan(v: &Value) -> bool {
if let Value::F32(v) = v {
return v.is_nan();
} else if let Value::F64(v) = v {
return v.is_nan();
}
return false;
}
fn wabt2rust_value_bare(v: &Value) -> String {
match v {
Value::I32(v) => format!("{:?} as i32", v),
Value::I64(v) => format!("{:?} as i64", v),
Value::F32(v) => {
if v.is_infinite() {
if v.is_sign_negative() {
"f32::NEG_INFINITY".to_string()
} else {
"f32::INFINITY".to_string()
}
} else if v.is_nan() {
// Support for non-canonical NaNs
format!("f32::from_bits({:?})", v.to_bits())
} else {
format!("{:?}", v)
}
}
Value::F64(v) => {
if v.is_infinite() {
if v.is_sign_negative() {
"f64::NEG_INFINITY".to_string()
} else {
"f64::INFINITY".to_string()
}
} else if v.is_nan() {
format!("f64::from_bits({:?})", v.to_bits())
} else {
format!("{:?}", v)
}
}
}
}
fn wabt2rust_value(v: &Value) -> String {
match v {
Value::I32(v) => format!("Value::I32({:?} as i32)", v),
Value::I64(v) => format!("Value::I64({:?} as i64)", v),
Value::F32(v) => {
if v.is_infinite() {
if v.is_sign_negative() {
"Value::F32(f32::NEG_INFINITY)".to_string()
} else {
"Value::F32(f32::INFINITY)".to_string()
}
} else if v.is_nan() {
// Support for non-canonical NaNs
format!("Value::F32(f32::from_bits({:?}))", v.to_bits())
} else {
format!("Value::F32(({:?}f32))", v)
}
}
Value::F64(v) => {
if v.is_infinite() {
if v.is_sign_negative() {
"Value::F64(f64::NEG_INFINITY)".to_string()
} else {
"Value::F64(f64::INFINITY)".to_string()
}
} else if v.is_nan() {
format!("Value::F64(f64::from_bits({:?}))", v.to_bits())
} else {
format!("Value::F64(({:?}f64))", v)
}
}
}
}
struct WastTestGenerator {
last_module: i32,
last_line: u64,
command_no: i32,
script_parser: ScriptParser,
module_calls: HashMap<i32, Vec<String>>,
buffer: String,
}
impl WastTestGenerator {
fn new(path: &PathBuf) -> Self {
let filename = path.file_name().unwrap().to_str().unwrap();
let source = fs::read(&path).unwrap();
let script: ScriptParser = ScriptParser::from_source_and_name(&source, filename)
.expect(&format!("Failed to parse script {}", &filename));
let buffer = String::new();
WastTestGenerator {
last_module: 0,
last_line: 0,
command_no: 0,
script_parser: script,
buffer: buffer,
module_calls: HashMap::new(),
}
}
fn is_fat_test(&self) -> bool {
self.command_no > 200
}
fn consume(&mut self) {
self.buffer.push_str(BANNER);
// self.buffer.push_str(&format!(
// "// Test based on spectests/{}
// #![allow(
// warnings,
// dead_code
// )]
// //use wabt::wat2wasm;
// use std::{{f32, f64}};
// use wasmer_runtime_core::types::Value;
// use wasmer_runtime_core::{{Instance, module::Module}};
// //use crate::spectests::_common::{{
// // generate_imports,
// // NaNCheck,
// //}};\n\n",
// self.filename
// ));
while let Some(Command { line, kind }) = &self.script_parser.next().unwrap() {
self.last_line = line.clone();
self.buffer
.push_str(&format!("\n// Line {}\n", self.last_line));
self.visit_command(&kind);
self.command_no = self.command_no + 1;
}
for n in 1..self.last_module + 1 {
self.flush_module_calls(n);
}
}
fn command_name(&self) -> String {
format!("c{}_l{}", self.command_no, self.last_line)
}
fn flush_module_calls(&mut self, module: i32) {
let calls: Vec<String> = self
.module_calls
.entry(module)
.or_insert(Vec::new())
.iter()
.map(|call_str| format!("{}(&mut instance);", call_str))
.collect();
if calls.len() > 0 {
self.buffer.push_str(
format!(
"\n#[test]
fn test_module_{}() {{
let mut instance = create_module_{}();
// We group the calls together
{}
}}\n",
module,
module,
calls.join("\n ")
)
.as_str(),
);
}
self.module_calls.remove(&module);
}
fn visit_module(&mut self, module: &ModuleBinary, _name: &Option<String>) {
let wasm_binary: Vec<u8> = module.clone().into_vec();
let wast_string = wasm2wat(wasm_binary).expect("Can't convert back to wasm");
let last_module = self.last_module;
self.flush_module_calls(last_module);
self.last_module = self.last_module + 1;
// self.module_calls.insert(self.last_module, vec![]);
self.buffer.push_str(
format!(
"fn create_module_{}() -> Instance {{
let module_str = \"{}\";
println!(\"{{}}\", module_str);
let wasm_binary = wat2wasm(module_str.as_bytes()).expect(\"WAST not valid or malformed\");
let module = wasmer_runtime_core::compile_with(&wasm_binary[..], &get_compiler()).expect(\"WASM can't be compiled\");
module.instantiate(&generate_imports()).expect(\"WASM can't be instantiated\")
}}\n",
self.last_module,
// We do this to ident four spaces, so it looks aligned to the function body
wast_string
.replace("\n", "\n ")
.replace("\\", "\\\\")
.replace("\"", "\\\""),
)
.as_str(),
);
}
fn visit_assert_invalid(&mut self, module: &ModuleBinary) {
let wasm_binary: Vec<u8> = module.clone().into_vec();
// let wast_string = wasm2wat(wasm_binary).expect("Can't convert back to wasm");
let command_name = self.command_name();
self.buffer.push_str(
format!(
"#[test]
fn {}_assert_invalid() {{
let wasm_binary = {:?};
let module = wasmer_runtime_core::compile_with(&wasm_binary, &get_compiler());
assert!(module.is_err(), \"WASM should not compile as is invalid\");
}}\n",
command_name,
wasm_binary,
// We do this to ident four spaces back
// String::from_utf8_lossy(&wasm_binary),
// wast_string.replace("\n", "\n "),
)
.as_str(),
);
}
// TODO: Refactor repetitive code
fn visit_assert_return_arithmetic_nan(&mut self, action: &Action) {
match action {
Action::Invoke {
module: _,
field,
args,
} => {
// let return_type = wabt2rust_type(&args[0]);
// let func_return = format!(" -> {}", return_type);
let assertion = String::from(
"assert!(match result {
Value::F32(fp) => fp.is_quiet_nan(),
Value::F64(fp) => fp.is_quiet_nan(),
_ => unimplemented!()
})",
);
// We map the arguments provided into the raw Arguments provided
// to libffi
// let args_types: Vec<String> = args.iter().map(wabt2rust_type).collect();
// args_types.push("&Instance".to_string());
let args_values: Vec<String> = args.iter().map(wabt2rust_value).collect();
// args_values.push("&result_object.instance".to_string());
let func_name = format!("{}_assert_return_arithmetic_nan", self.command_name());
self.buffer.push_str(
format!(
"fn {func_name}(instance: &mut Instance) {{
println!(\"Executing function {{}}\", \"{func_name}\");
let result = instance.call(\"{field}\", &[{args_values}]).unwrap().first().expect(\"Missing result in {func_name}\").clone();
{assertion}
}}\n",
func_name=func_name,
field=field,
args_values=args_values.join(", "),
assertion=assertion,
)
.as_str(),
);
// field=field,
// args_types=args_types.join(", "),
// func_return=func_return,
self.module_calls
.entry(self.last_module)
.or_insert(Vec::new())
.push(func_name);
// let mut module_calls = self.module_calls.get(&self.last_module).unwrap();
// module_calls.push(func_name);
}
_ => {}
};
}
// PROBLEM: Im assuming the return type from the first argument type
// and wabt does gives us the `expected` result
// TODO: Refactor repetitive code
fn visit_assert_return_canonical_nan(&mut self, action: &Action) {
match action {
Action::Invoke {
module: _,
field,
args,
} => {
let _return_type = match &field.as_str() {
&"f64.promote_f32" => String::from("f64"),
&"f32.promote_f64" => String::from("f32"),
_ => wabt2rust_type(&args[0]),
};
// let func_return = format!(" -> {}", return_type);
let assertion = String::from(
"assert!(match result {
Value::F32(fp) => fp.is_quiet_nan(),
Value::F64(fp) => fp.is_quiet_nan(),
_ => unimplemented!()
})",
);
// We map the arguments provided into the raw Arguments provided
// to libffi
// let args_types: Vec<String> = args.iter().map(wabt2rust_type).collect();
// args_types.push("&Instance".to_string());
let args_values: Vec<String> = args.iter().map(wabt2rust_value).collect();
// args_values.push("&result_object.instance".to_string());
let func_name = format!("{}_assert_return_canonical_nan", self.command_name());
self.buffer.push_str(
format!(
"fn {func_name}(instance: &mut Instance) {{
println!(\"Executing function {{}}\", \"{func_name}\");
let result = instance.call(\"{field}\", &[{args_values}]).unwrap().first().expect(\"Missing result in {func_name}\").clone();
{assertion}
}}\n",
func_name=func_name,
field=field,
args_values=args_values.join(", "),
assertion=assertion,
)
.as_str(),
);
self.module_calls
.entry(self.last_module)
.or_insert(Vec::new())
.push(func_name);
// let mut module_calls = self.module_calls.get(&self.last_module).unwrap();
// module_calls.push(func_name);
}
_ => {}
};
}
fn visit_assert_malformed(&mut self, module: &ModuleBinary) {
let wasm_binary: Vec<u8> = module.clone().into_vec();
let command_name = self.command_name();
// let wast_string = wasm2wat(wasm_binary).expect("Can't convert back to wasm");
self.buffer.push_str(
format!(
"#[test]
fn {}_assert_malformed() {{
let wasm_binary = {:?};
let compilation = wasmer_runtime_core::compile_with(&wasm_binary, &get_compiler());
assert!(compilation.is_err(), \"WASM should not compile as is malformed\");
}}\n",
command_name,
wasm_binary,
// We do this to ident four spaces back
// String::from_utf8_lossy(&wasm_binary),
// wast_string.replace("\n", "\n "),
)
.as_str(),
);
}
// TODO: Refactor repetitive code
fn visit_action(&mut self, action: &Action, expected: Option<&Vec<Value>>) -> Option<String> {
match action {
Action::Invoke {
module: _,
field,
args,
} => {
let (_func_return, assertion) = match expected {
Some(expected) => {
let func_return = if expected.len() > 0 {
format!(" -> {}", wabt2rust_type(&expected[0]))
} else {
"".to_string()
};
let expected_result = if expected.len() > 0 {
wabt2rust_value_bare(&expected[0])
} else {
"should not use this expect result".to_string()
};
let expected_vec_result = if expected.len() > 0 {
format!("Ok(vec![{}])", wabt2rust_value(&expected[0]))
} else {
"Ok(vec![])".to_string()
};
let return_type = if expected.len() > 0 {
wabt2rust_type(&expected[0])
} else {
"should not use this return type".to_string()
};
let return_type_destructure = if expected.len() > 0 {
wabt2rust_type_destructure(&expected[0], "result")
} else {
"should not use this result return type destructure".to_string()
};
let _expected_type_destructure = if expected.len() > 0 {
wabt2rust_type_destructure(&expected[0], "expected")
} else {
"should not use this expected return type destructure".to_string()
};
let assertion = if expected.len() > 0 && is_nan(&expected[0]) {
format!(
"let expected = {expected_result};
if let {return_type_destructure} = result.as_ref().unwrap().first().unwrap() {{
assert!((*result as {return_type}).is_nan());
assert_eq!((*result as {return_type}).is_sign_positive(), (expected as {return_type}).is_sign_positive());
}} else {{
panic!(\"Unexpected result type {{:?}}\", result);
}}",
expected_result=expected_result,
return_type=return_type,
return_type_destructure=return_type_destructure
)
} else {
format!("assert_eq!(result, {});", expected_vec_result)
};
(func_return, assertion)
}
None => ("".to_string(), "".to_string()),
};
// We map the arguments provided into the raw Arguments provided
// to libffi
// let mut args_types: Vec<String> = args.iter().map(wabt2rust_type).collect();
// args_types.push("&Instance".to_string());
let args_values: Vec<String> = args.iter().map(wabt2rust_value).collect();
// args_values.push("&result_object.instance".to_string());
let func_name = format!("{}_action_invoke", self.command_name());
self.buffer.push_str(
format!(
"fn {func_name}(instance: &mut Instance) -> Result<()> {{
println!(\"Executing function {{}}\", \"{func_name}\");
let result = instance.call(\"{field}\", &[{args_values}]);
{assertion}
result?;
Ok(())
}}\n",
func_name = func_name,
field = field,
args_values = args_values.join(", "),
assertion = assertion,
)
.as_str(),
);
Some(func_name)
// let mut module_calls = self.module_calls.get(&self.last_module).unwrap();
// module_calls.push(func_name);
}
_ => None,
}
}
fn visit_assert_return(&mut self, action: &Action, expected: &Vec<Value>) {
let action_fn_name = self.visit_action(action, Some(expected));
if action_fn_name.is_none() {
return;
}
self.module_calls
.entry(self.last_module)
.or_insert(Vec::new())
.push(action_fn_name.unwrap());
}
fn visit_perform_action(&mut self, action: &Action) {
let action_fn_name = self.visit_action(action, None);
if action_fn_name.is_none() {
return;
}
self.module_calls
.entry(self.last_module)
.or_insert(Vec::new())
.push(action_fn_name.unwrap());
}
fn visit_assert_trap(&mut self, action: &Action) {
let action_fn_name = self.visit_action(action, None);
if action_fn_name.is_none() {
return;
}
let trap_func_name = format!("{}_assert_trap", self.command_name());
self.buffer.push_str(
format!(
"
#[test]
fn {}() {{
let mut instance = create_module_{}();
let result = {}(&mut instance);
assert!(result.is_err());
}}\n",
trap_func_name,
self.last_module,
action_fn_name.unwrap(),
)
.as_str(),
);
// We don't group trap calls as they may cause memory faults
// on the instance memory. So we test them alone.
// self.module_calls
// .entry(self.last_module)
// .or_insert(Vec::new())
// .push(trap_func_name);
}
fn visit_command(&mut self, cmd: &CommandKind) {
match cmd {
CommandKind::Module { module, name } => {
self.visit_module(module, name);
}
CommandKind::AssertReturn { action, expected } => {
self.visit_assert_return(action, expected)
}
CommandKind::AssertReturnCanonicalNan { action } => {
self.visit_assert_return_canonical_nan(action);
}
CommandKind::AssertReturnArithmeticNan { action } => {
self.visit_assert_return_arithmetic_nan(action);
}
CommandKind::AssertTrap { action, message: _ } => {
self.visit_assert_trap(action);
}
CommandKind::AssertInvalid { module, message: _ } => {
self.visit_assert_invalid(module);
}
CommandKind::AssertMalformed { module, message: _ } => {
self.visit_assert_malformed(module);
}
CommandKind::AssertUninstantiable {
module: _,
message: _,
} => {
// Do nothing for now
}
CommandKind::AssertExhaustion { action: _ } => {
// Do nothing for now
}
CommandKind::AssertUnlinkable {
module: _,
message: _,
} => {
// Do nothing for now
}
CommandKind::Register {
name: _,
as_name: _,
} => {
// Do nothing for now
}
CommandKind::PerformAction(action) => {
self.visit_perform_action(action);
}
}
}
fn finalize(&self) -> &String {
&self.buffer
}
}
fn generate_spectest(out: &mut File, test_name: &str, wast: &PathBuf) -> std::io::Result<()> {
let mut generator = WastTestGenerator::new(wast);
generator.consume();
let generated_script = generator.finalize();
if !generator.is_fat_test() {
out.write(format!("mod test_{} {{\nuse super::*;\n", test_name).as_bytes())?;
out.write(generated_script.as_bytes())?;
out.write("\n}\n".as_bytes())?;
}
Ok(())
}
pub fn build() -> std::io::Result<()> {
let mut out_file = File::create(format!("{}/spectests.rs", env::var("OUT_DIR").unwrap()))?;
out_file.write(COMMON.as_bytes())?;
for test in TESTS.iter() {
let mut wast_path = PathBuf::from(env!("CARGO_MANIFEST_DIR"));
wast_path.push(test);
generate_spectest(
&mut out_file,
test.split("/").last().unwrap().split(".").next().unwrap(),
&wast_path,
)?
}
Ok(())
}