wasmer/lib/emscripten-tests/emtests/test_emmalloc.cpp

305 lines
7.5 KiB
C++

// Copyright 2018 The Emscripten Authors. All rights reserved.
// Emscripten is available under two separate licenses, the MIT license and the
// University of Illinois/NCSA Open Source License. Both these licenses can be
// found in the LICENSE file.
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <emscripten.h>
#ifndef RANDOM_ITERS
#define RANDOM_ITERS 12345
#endif
extern void emmalloc_blank_slate_from_orbit();
// Test emmalloc internals, but through the external interface. We expect
// very specific outputs here based on the internals, this test would not
// pass in another malloc.
void* check_where_we_would_malloc(size_t size) {
void* temp = malloc(size);
free(temp);
return temp;
}
void check_where_we_would_malloc(size_t size, void* expected) {
void* temp = malloc(size);
assert(temp == expected);
free(temp);
}
void stage(const char* name) {
EM_ASM({
out('\n>> ' + Pointer_stringify($0) + '\n');
}, name);
}
const size_t ALLOCATION_UNIT = 8;
void basics() {
stage("basics");
stage("allocate 0");
void* ptr = malloc(0);
assert(ptr == 0);
stage("allocate 100");
void* first = malloc(100);
stage("free 100");
free(first);
stage("allocate another 100");
void* second = malloc(100);
stage("allocate 10");
assert(second == first);
void* third = malloc(10);
assert(size_t(third) == size_t(first) + ((100 + ALLOCATION_UNIT - 1)&(-ALLOCATION_UNIT)) + ALLOCATION_UNIT); // allocation units are multiples of ALLOCATION_UNIT
stage("allocate 10 more");
void* four = malloc(10);
assert(size_t(four) == size_t(third) + (2*ALLOCATION_UNIT) + ALLOCATION_UNIT); // payload (10 = 2 allocation units) and metadata
stage("free the first");
free(second);
stage("several temp alloc/frees");
// we reuse the first area, despite stuff later.
for (int i = 0; i < 4; i++) {
check_where_we_would_malloc(100, first);
}
stage("free all");
free(third);
free(four);
stage("allocate various sizes to see they all start at the start");
for (int i = 1; i < 1500; i++) {
check_where_we_would_malloc(i, first);
}
}
void blank_slate() {
stage("blank_slate");
emmalloc_blank_slate_from_orbit();
void* ptr = malloc(0);
free(ptr);
for (int i = 0; i < 3; i++) {
void* two = malloc(0);
assert(two == ptr);
free(two);
}
for (int i = 0; i < 3; i++) {
emmalloc_blank_slate_from_orbit();
void* two = malloc(0);
assert(two == ptr);
free(two);
}
}
void previous_sbrk() {
stage("previous_sbrk");
emmalloc_blank_slate_from_orbit();
void* old = sbrk(0);
assert((size_t)old % ALLOCATION_UNIT == 0);
sbrk(3); // unalign things
void* other = malloc(10);
free(other);
assert(other != old);
assert((char*)other == (char*)old + 2 * ALLOCATION_UNIT);
}
void min_alloc() {
stage("min_alloc");
emmalloc_blank_slate_from_orbit();
void* start = check_where_we_would_malloc(1);
for (int i = 1; i < 100; i++) {
void* temp = malloc(i);
void* expected = (char*)start + ALLOCATION_UNIT + ALLOCATION_UNIT * ((i + ALLOCATION_UNIT - 1) / ALLOCATION_UNIT);
check_where_we_would_malloc(1, expected);
free(temp);
}
}
void space_at_end() {
stage("space_at_end");
emmalloc_blank_slate_from_orbit();
void* start = check_where_we_would_malloc(1);
for (int i = 1; i < 50; i++) {
for (int j = 1; j < 50; j++) {
void* temp = malloc(i);
free(temp);
check_where_we_would_malloc(j, start);
}
}
}
void calloc() {
stage("calloc");
emmalloc_blank_slate_from_orbit();
char* ptr = (char*)malloc(10);
ptr[0] = 77;
free(ptr);
char* cptr = (char*)calloc(10, 1);
assert(cptr == ptr);
assert(ptr[0] == 0);
}
void realloc() {
stage("realloc0");
emmalloc_blank_slate_from_orbit();
for (int i = 0; i < 2; i++) {
char* ptr = (char*)malloc(10);
stage("realloc0.1");
char* raptr = (char*)realloc(ptr, 1);
assert(raptr == ptr);
stage("realloc0.2");
char* raptr2 = (char*)realloc(raptr, 100);
assert(raptr2 == ptr);
char* last = (char*)malloc(1);
assert(last >= ptr + 100);
// slightly more still fits
stage("realloc0.3");
char* raptr3 = (char*)realloc(raptr2, 11);
assert(raptr3 == ptr);
// finally, realloc a size we must reallocate for
stage("realloc0.4");
char* raptr4 = (char*)realloc(raptr3, 1000);
assert(raptr4);
assert(raptr4 != ptr);
// leaving those in place, do another iteration
}
stage("realloc1");
emmalloc_blank_slate_from_orbit();
{
// realloc of NULL is like malloc
void* ptr = check_where_we_would_malloc(10);
assert(realloc(NULL, 10) == ptr);
}
stage("realloc2");
emmalloc_blank_slate_from_orbit();
{
// realloc to 0 is like free
void* ptr = malloc(10);
assert(realloc(ptr, 0) == NULL);
assert(check_where_we_would_malloc(10) == ptr);
}
stage("realloc3");
emmalloc_blank_slate_from_orbit();
{
// realloc copies
char* ptr = (char*)malloc(10);
*ptr = 123;
for (int i = 5; i <= 16; i++) {
char* temp = (char*)realloc(ptr, i);
assert(*temp == 123);
assert(temp == ptr);
}
stage("realloc3.5");
malloc(1);
malloc(100);
{
char* temp = (char*)realloc(ptr, 17);
assert(*temp == 123);
assert(temp != ptr);
ptr = temp;
}
}
}
void check_aligned(size_t align, size_t ptr) {
if (align < 4 || ((align & (align - 1)) != 0)) {
assert(ptr == 0);
} else {
assert(ptr);
assert(ptr % align == 0);
}
}
void aligned() {
stage("aligned");
for (int i = 0; i < 35; i++) {
for (int j = 0; j < 35; j++) {
emmalloc_blank_slate_from_orbit();
size_t first = (size_t)memalign(i, 100);
size_t second = (size_t)memalign(j, 100);
printf("%d %d => %d %d\n", i, j, first, second);
check_aligned(i, first);
check_aligned(j, second);
}
}
}
void randoms() {
stage("randoms");
emmalloc_blank_slate_from_orbit();
void* start = check_where_we_would_malloc(10);
const int N = 1000;
const int BINS = 128;
void* bins[BINS];
char values[BINS];
for (int i = 0; i < BINS; i++) {
bins[i] = NULL;
}
srandom(1337101);
for (int i = 0; i < RANDOM_ITERS; i++) {
unsigned int r = random();
int alloc = r & 1;
r >>= 1;
int calloc_ = r & 1;
r >>= 1;
int bin = r & 127;
r >>= 7;
unsigned int size = r & 65535;
r >>= 16;
int useShifts = r & 1;
r >>= 1;
unsigned int shifts = r & 15;
r >>= 4;
if (size == 0) size = 1;
if (useShifts) {
size >>= shifts; // spread out values logarithmically
}
if (alloc || !bins[bin]) {
if (bins[bin]) {
char value = values[bin];
assert(*(char*)(bins[bin]) == value /* one */);
bins[bin] = realloc(bins[bin], size);
if (bins[bin]) {
assert(*(char*)(bins[bin]) == value /* two */);
}
} else {
if (calloc_) {
bins[bin] = malloc(size);
} else {
bins[bin] = calloc(size, 1);
}
values[bin] = random();
if (bins[bin]) {
*(char*)(bins[bin]) = values[bin];
assert(*(char*)(bins[bin]) == values[bin] /* three */);
}
}
} else {
free(bins[bin]);
bins[bin] = NULL;
}
}
for (int i = 0; i < BINS; i++) {
if (bins[i]) free(bins[i]);
}
// it's all freed, should be a blank slate
assert(check_where_we_would_malloc(10) == start);
}
int main() {
stage("beginning");
basics();
blank_slate();
previous_sbrk();
min_alloc();
space_at_end();
calloc();
realloc();
aligned();
randoms();
stage("the_end");
}