wasmer/lib/clif-backend/src/resolver.rs
2019-02-08 13:51:29 -08:00

371 lines
14 KiB
Rust

#[cfg(feature = "cache")]
use crate::{
cache::{BackendCache, TrampolineCache},
trampoline::Trampolines,
};
use crate::{
libcalls,
relocation::{
ExternalRelocation, LibCall, LocalRelocation, LocalTrapSink, Reloc, RelocSink,
RelocationType, TrapSink, VmCall, VmCallKind,
},
signal::HandlerData,
};
use byteorder::{ByteOrder, LittleEndian};
use cranelift_codegen::{ir, isa, Context};
use std::{
mem,
ptr::{write_unaligned, NonNull},
sync::Arc,
};
#[cfg(feature = "cache")]
use wasmer_runtime_core::cache::Error as CacheError;
use wasmer_runtime_core::{
self,
backend::{
self,
sys::{Memory, Protect},
SigRegistry,
},
error::{CompileError, CompileResult},
module::ModuleInfo,
structures::{Map, SliceMap, TypedIndex},
types::{FuncSig, LocalFuncIndex, SigIndex},
vm, vmcalls,
};
extern "C" {
#[cfg(not(target_os = "windows"))]
pub fn __rust_probestack();
#[cfg(all(target_os = "windows", target_pointer_width = "64"))]
pub fn __chkstk();
}
#[allow(dead_code)]
pub struct FuncResolverBuilder {
resolver: FuncResolver,
local_relocs: Map<LocalFuncIndex, Box<[LocalRelocation]>>,
external_relocs: Map<LocalFuncIndex, Box<[ExternalRelocation]>>,
import_len: usize,
}
impl FuncResolverBuilder {
#[cfg(feature = "cache")]
pub fn new_from_backend_cache(
backend_cache: BackendCache,
mut code: Memory,
info: &ModuleInfo,
) -> Result<(Self, Trampolines, HandlerData), CacheError> {
unsafe {
code.protect(.., Protect::ReadWrite)
.map_err(|e| CacheError::Unknown(e.to_string()))?;
}
let handler_data =
HandlerData::new(backend_cache.trap_sink, code.as_ptr() as _, code.size());
Ok((
Self {
resolver: FuncResolver {
map: backend_cache.offsets,
memory: code,
},
local_relocs: Map::new(),
external_relocs: backend_cache.external_relocs,
import_len: info.imported_functions.len(),
},
Trampolines::from_trampoline_cache(backend_cache.trampolines),
handler_data,
))
}
#[cfg(feature = "cache")]
pub fn to_backend_cache(
mut self,
trampolines: TrampolineCache,
handler_data: HandlerData,
) -> (BackendCache, Memory) {
self.relocate_locals();
(
BackendCache {
external_relocs: self.external_relocs,
offsets: self.resolver.map,
trap_sink: handler_data.trap_data,
trampolines,
},
self.resolver.memory,
)
}
pub fn new(
isa: &isa::TargetIsa,
function_bodies: Map<LocalFuncIndex, ir::Function>,
info: &ModuleInfo,
) -> CompileResult<(Self, HandlerData)> {
let mut compiled_functions: Vec<Vec<u8>> = Vec::with_capacity(function_bodies.len());
let mut local_relocs = Map::with_capacity(function_bodies.len());
let mut external_relocs = Map::new();
let mut trap_sink = TrapSink::new();
let mut local_trap_sink = LocalTrapSink::new();
let mut ctx = Context::new();
let mut total_size = 0;
for (_, func) in function_bodies {
ctx.func = func;
let mut code_buf = Vec::new();
let mut reloc_sink = RelocSink::new();
ctx.compile_and_emit(isa, &mut code_buf, &mut reloc_sink, &mut local_trap_sink)
.map_err(|e| CompileError::InternalError { msg: e.to_string() })?;
ctx.clear();
// Clear the local trap sink and consolidate all trap info
// into a single location.
trap_sink.drain_local(total_size, &mut local_trap_sink);
// Round up each function's size to pointer alignment.
total_size += round_up(code_buf.len(), mem::size_of::<usize>());
compiled_functions.push(code_buf);
local_relocs.push(reloc_sink.local_relocs.into_boxed_slice());
external_relocs.push(reloc_sink.external_relocs.into_boxed_slice());
}
let mut memory = Memory::with_size(total_size)
.map_err(|e| CompileError::InternalError { msg: e.to_string() })?;
unsafe {
memory
.protect(.., Protect::ReadWrite)
.map_err(|e| CompileError::InternalError { msg: e.to_string() })?;
}
// Normally, excess memory due to alignment and page-rounding would
// be filled with null-bytes. On x86 (and x86_64),
// "\x00\x00" disassembles to "add byte ptr [eax],al".
//
// If the instruction pointer falls out of its designated area,
// it would be better if it would immediately crash instead of
// continuing on and causing non-local issues.
//
// "\xCC" disassembles to "int3", which will immediately cause
// an interrupt that we can catch if we want.
for i in unsafe { memory.as_slice_mut() } {
*i = 0xCC;
}
let mut map = Map::with_capacity(compiled_functions.len());
let mut previous_end = 0;
for compiled in compiled_functions.iter() {
let new_end = previous_end + round_up(compiled.len(), mem::size_of::<usize>());
unsafe {
memory.as_slice_mut()[previous_end..previous_end + compiled.len()]
.copy_from_slice(&compiled[..]);
}
map.push(previous_end);
previous_end = new_end;
}
let handler_data = HandlerData::new(trap_sink, memory.as_ptr() as _, memory.size());
let mut func_resolver_builder = Self {
resolver: FuncResolver { map, memory },
local_relocs,
external_relocs,
import_len: info.imported_functions.len(),
};
func_resolver_builder.relocate_locals();
Ok((func_resolver_builder, handler_data))
}
fn relocate_locals(&mut self) {
for (index, relocs) in self.local_relocs.iter() {
for ref reloc in relocs.iter() {
let local_func_index = LocalFuncIndex::new(reloc.target.index() - self.import_len);
let target_func_address =
self.resolver.lookup(local_func_index).unwrap().as_ptr() as usize;
// We need the address of the current function
// because these calls are relative.
let func_addr = self.resolver.lookup(index).unwrap().as_ptr() as usize;
unsafe {
let reloc_address = func_addr + reloc.offset as usize;
let reloc_delta = target_func_address
.wrapping_sub(reloc_address)
.wrapping_add(reloc.addend as usize);
write_unaligned(reloc_address as *mut u32, reloc_delta as u32);
}
}
}
}
pub fn finalize(
mut self,
signatures: &SliceMap<SigIndex, Arc<FuncSig>>,
) -> CompileResult<FuncResolver> {
for (index, relocs) in self.external_relocs.iter() {
for ref reloc in relocs.iter() {
let target_func_address: isize = match reloc.target {
RelocationType::LibCall(libcall) => match libcall {
LibCall::CeilF32 => libcalls::ceilf32 as isize,
LibCall::FloorF32 => libcalls::floorf32 as isize,
LibCall::TruncF32 => libcalls::truncf32 as isize,
LibCall::NearestF32 => libcalls::nearbyintf32 as isize,
LibCall::CeilF64 => libcalls::ceilf64 as isize,
LibCall::FloorF64 => libcalls::floorf64 as isize,
LibCall::TruncF64 => libcalls::truncf64 as isize,
LibCall::NearestF64 => libcalls::nearbyintf64 as isize,
#[cfg(all(target_pointer_width = "64", target_os = "windows"))]
Probestack => __chkstk as isize,
#[cfg(not(target_os = "windows"))]
Probestack => __rust_probestack as isize,
},
RelocationType::Intrinsic(ref name) => match name.as_str() {
"i32print" => i32_print as isize,
"i64print" => i64_print as isize,
"f32print" => f32_print as isize,
"f64print" => f64_print as isize,
"strtdbug" => start_debug as isize,
"enddbug" => end_debug as isize,
_ => Err(CompileError::InternalError {
msg: format!("unexpected intrinsic: {}", name),
})?,
},
RelocationType::VmCall(vmcall) => match vmcall {
VmCall::Local(kind) => match kind {
VmCallKind::StaticMemoryGrow => vmcalls::local_static_memory_grow as _,
VmCallKind::StaticMemorySize => vmcalls::local_static_memory_size as _,
VmCallKind::SharedStaticMemoryGrow => unimplemented!(),
VmCallKind::SharedStaticMemorySize => unimplemented!(),
VmCallKind::DynamicMemoryGrow => {
vmcalls::local_dynamic_memory_grow as _
}
VmCallKind::DynamicMemorySize => {
vmcalls::local_dynamic_memory_size as _
}
},
VmCall::Import(kind) => match kind {
VmCallKind::StaticMemoryGrow => {
vmcalls::imported_static_memory_grow as _
}
VmCallKind::StaticMemorySize => {
vmcalls::imported_static_memory_size as _
}
VmCallKind::SharedStaticMemoryGrow => unimplemented!(),
VmCallKind::SharedStaticMemorySize => unimplemented!(),
VmCallKind::DynamicMemoryGrow => {
vmcalls::imported_dynamic_memory_grow as _
}
VmCallKind::DynamicMemorySize => {
vmcalls::imported_dynamic_memory_size as _
}
},
},
RelocationType::Signature(sig_index) => {
let sig_index =
SigRegistry.lookup_sig_index(Arc::clone(&signatures[sig_index]));
sig_index.index() as _
}
};
// We need the address of the current function
// because some of these calls are relative.
let func_addr = self.resolver.lookup(index).unwrap().as_ptr();
// Determine relocation type and apply relocation.
match reloc.reloc {
Reloc::Abs8 => {
let ptr_to_write = (target_func_address as u64)
.checked_add(reloc.addend as u64)
.unwrap();
let empty_space_offset = self.resolver.map[index] + reloc.offset as usize;
let ptr_slice = unsafe {
&mut self.resolver.memory.as_slice_mut()
[empty_space_offset..empty_space_offset + 8]
};
LittleEndian::write_u64(ptr_slice, ptr_to_write);
}
Reloc::X86PCRel4 | Reloc::X86CallPCRel4 => unsafe {
let reloc_address = (func_addr as usize) + reloc.offset as usize;
let reloc_delta = target_func_address
.wrapping_sub(reloc_address as isize)
.wrapping_add(reloc.addend as isize);
write_unaligned(reloc_address as *mut u32, reloc_delta as u32);
},
}
}
}
unsafe {
self.resolver
.memory
.protect(.., Protect::ReadExec)
.map_err(|e| CompileError::InternalError { msg: e.to_string() })?;
}
Ok(self.resolver)
}
}
/// Resolves a function index to a function address.
pub struct FuncResolver {
map: Map<LocalFuncIndex, usize>,
memory: Memory,
}
impl FuncResolver {
fn lookup(&self, local_func_index: LocalFuncIndex) -> Option<NonNull<vm::Func>> {
let offset = *self.map.get(local_func_index)?;
let ptr = unsafe { self.memory.as_ptr().add(offset) };
NonNull::new(ptr).map(|nonnull| nonnull.cast())
}
}
// Implements FuncResolver trait.
impl backend::FuncResolver for FuncResolver {
fn get(
&self,
_module: &wasmer_runtime_core::module::ModuleInner,
index: LocalFuncIndex,
) -> Option<NonNull<vm::Func>> {
self.lookup(index)
}
}
#[inline]
fn round_up(n: usize, multiple: usize) -> usize {
(n + multiple - 1) & !(multiple - 1)
}
extern "C" fn i32_print(n: i32) {
print!(" i32: {},", n);
}
extern "C" fn i64_print(n: i64) {
print!(" i64: {},", n);
}
extern "C" fn f32_print(n: f32) {
print!(" f32: {},", n);
}
extern "C" fn f64_print(n: f64) {
print!(" f64: {},", n);
}
extern "C" fn start_debug(func_index: u32) {
print!("func ({}), args: [", func_index);
}
extern "C" fn end_debug() {
println!(" ]");
}