//! This file will run at build time to autogenerate Rust tests based on //! WebAssembly spec tests. It will convert the files indicated in TESTS //! from "/spectests/{MODULE}.wast" to "/src/spectests/{MODULE}.rs". use std::collections::HashMap; use std::fs::File; use std::path::PathBuf; use std::{env, fs, io::Write}; use wabt::script::{Action, Command, CommandKind, ModuleBinary, ScriptParser, Value}; use wabt::wasm2wat; static BANNER: &str = "// Rust test file autogenerated with cargo build (build/spectests.rs). // Please do NOT modify it by hand, as it will be reset on next build.\n"; const TESTS: &[&str] = &[ "spectests/address.wast", "spectests/align.wast", "spectests/binary.wast", "spectests/block.wast", "spectests/br.wast", "spectests/br_if.wast", "spectests/br_table.wast", "spectests/break_drop.wast", "spectests/call.wast", "spectests/call_indirect.wast", "spectests/comments.wast", "spectests/const_.wast", "spectests/conversions.wast", "spectests/custom.wast", "spectests/data.wast", "spectests/elem.wast", "spectests/endianness.wast", "spectests/exports.wast", "spectests/f32_.wast", "spectests/f32_bitwise.wast", "spectests/f32_cmp.wast", "spectests/f64_.wast", "spectests/f64_bitwise.wast", "spectests/f64_cmp.wast", "spectests/fac.wast", "spectests/float_exprs.wast", "spectests/float_literals.wast", "spectests/float_memory.wast", "spectests/float_misc.wast", "spectests/forward.wast", "spectests/func.wast", "spectests/func_ptrs.wast", "spectests/get_local.wast", "spectests/globals.wast", "spectests/i32_.wast", "spectests/i64_.wast", "spectests/if_.wast", "spectests/int_exprs.wast", "spectests/int_literals.wast", "spectests/labels.wast", "spectests/left_to_right.wast", "spectests/loop_.wast", "spectests/memory.wast", "spectests/memory_grow.wast", "spectests/memory_redundancy.wast", "spectests/memory_trap.wast", "spectests/nop.wast", "spectests/return_.wast", "spectests/select.wast", "spectests/set_local.wast", "spectests/stack.wast", "spectests/start.wast", "spectests/store_retval.wast", "spectests/switch.wast", "spectests/tee_local.wast", "spectests/token.wast", "spectests/traps.wast", "spectests/typecheck.wast", "spectests/types.wast", "spectests/unwind.wast", ]; static COMMON: &'static str = r##" use std::{{f32, f64}}; use wabt::wat2wasm; use wasmer_clif_backend::CraneliftCompiler; use wasmer_runtime_core::import::ImportObject; use wasmer_runtime_core::types::Value; use wasmer_runtime_core::{{Instance, module::Module}}; use wasmer_runtime_core::error::Result; use wasmer_runtime_core::vm::Ctx; static IMPORT_MODULE: &str = r#" (module (type $t0 (func (param i32))) (type $t1 (func)) (func $print_i32 (export "print_i32") (type $t0) (param $lhs i32)) (func $print (export "print") (type $t1)) (table $table (export "table") 10 20 anyfunc) (memory $memory (export "memory") 1 2) (global $global_i32 (export "global_i32") i32 (i32.const 666))) "#; pub fn generate_imports() -> ImportObject { let wasm_binary = wat2wasm(IMPORT_MODULE.as_bytes()).expect("WAST not valid or malformed"); let module = wasmer_runtime_core::compile_with(&wasm_binary[..], &CraneliftCompiler::new()) .expect("WASM can't be compiled"); let instance = module .instantiate(&ImportObject::new()) .expect("WASM can't be instantiated"); let mut imports = ImportObject::new(); imports.register("spectest", instance); imports } /// Bit pattern of an f32 value: /// 1-bit sign + 8-bit mantissa + 23-bit exponent = 32 bits /// /// Bit pattern of an f64 value: /// 1-bit sign + 11-bit mantissa + 52-bit exponent = 64 bits /// /// NOTE: On some old platforms (PA-RISC, some MIPS) quiet NaNs (qNaN) have /// their mantissa MSB unset and set for signaling NaNs (sNaN). /// /// Links: /// * https://en.wikipedia.org/wiki/Floating-point_arithmetic /// * https://github.com/WebAssembly/spec/issues/286 /// * https://en.wikipedia.org/wiki/NaN /// pub trait NaNCheck { fn is_quiet_nan(&self) -> bool; fn is_canonical_nan(&self) -> bool; } impl NaNCheck for f32 { /// The MSB of the mantissa must be set for a NaN to be a quiet NaN. fn is_quiet_nan(&self) -> bool { let bit_mask = 0b1 << 22; // Used to check if 23rd bit is set, which is MSB of the mantissa self.is_nan() && (self.to_bits() & bit_mask) == bit_mask } /// For a NaN to be canonical, its mantissa bits must all be unset fn is_canonical_nan(&self) -> bool { let bit_mask: u32 = 0b1____0000_0000____011_1111_1111_1111_1111_1111; let masked_value = self.to_bits() ^ bit_mask; masked_value == 0xFFFF_FFFF || masked_value == 0x7FFF_FFFF } } impl NaNCheck for f64 { /// The MSB of the mantissa must be set for a NaN to be a quiet NaN. fn is_quiet_nan(&self) -> bool { let bit_mask = 0b1 << 51; // Used to check if 52st bit is set, which is MSB of the mantissa self.is_nan() && (self.to_bits() & bit_mask) == bit_mask } /// For a NaN to be canonical, its mantissa bits must all be unset fn is_canonical_nan(&self) -> bool { let bit_mask: u64 = 0b1____000_0000_0000____0111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111; let masked_value = self.to_bits() ^ bit_mask; masked_value == 0x7FFF_FFFF_FFFF_FFFF || masked_value == 0xFFF_FFFF_FFFF_FFFF } } "##; fn wabt2rust_type(v: &Value) -> String { match v { Value::I32(_v) => format!("i32"), Value::I64(_v) => format!("i64"), Value::F32(_v) => format!("f32"), Value::F64(_v) => format!("f64"), } } fn wabt2rust_type_destructure(v: &Value, placeholder: &str) -> String { match v { Value::I32(_v) => format!("Value::I32({})", placeholder), Value::I64(_v) => format!("Value::I64({})", placeholder), Value::F32(_v) => format!("Value::F32({})", placeholder), Value::F64(_v) => format!("Value::F64({})", placeholder), } } fn is_nan(v: &Value) -> bool { if let Value::F32(v) = v { return v.is_nan(); } else if let Value::F64(v) = v { return v.is_nan(); } return false; } fn wabt2rust_value_bare(v: &Value) -> String { match v { Value::I32(v) => format!("{:?} as i32", v), Value::I64(v) => format!("{:?} as i64", v), Value::F32(v) => { if v.is_infinite() { if v.is_sign_negative() { "f32::NEG_INFINITY".to_string() } else { "f32::INFINITY".to_string() } } else if v.is_nan() { // Support for non-canonical NaNs format!("f32::from_bits({:?})", v.to_bits()) } else { format!("{:?}", v) } } Value::F64(v) => { if v.is_infinite() { if v.is_sign_negative() { "f64::NEG_INFINITY".to_string() } else { "f64::INFINITY".to_string() } } else if v.is_nan() { format!("f64::from_bits({:?})", v.to_bits()) } else { format!("{:?}", v) } } } } fn wabt2rust_value(v: &Value) -> String { match v { Value::I32(v) => format!("Value::I32({:?} as i32)", v), Value::I64(v) => format!("Value::I64({:?} as i64)", v), Value::F32(v) => { if v.is_infinite() { if v.is_sign_negative() { "Value::F32(f32::NEG_INFINITY)".to_string() } else { "Value::F32(f32::INFINITY)".to_string() } } else if v.is_nan() { // Support for non-canonical NaNs format!("Value::F32(f32::from_bits({:?}))", v.to_bits()) } else { format!("Value::F32(({:?}f32))", v) } } Value::F64(v) => { if v.is_infinite() { if v.is_sign_negative() { "Value::F64(f64::NEG_INFINITY)".to_string() } else { "Value::F64(f64::INFINITY)".to_string() } } else if v.is_nan() { format!("Value::F64(f64::from_bits({:?}))", v.to_bits()) } else { format!("Value::F64(({:?}f64))", v) } } } } struct WastTestGenerator { last_module: i32, last_line: u64, command_no: i32, script_parser: ScriptParser, module_calls: HashMap<i32, Vec<String>>, buffer: String, } impl WastTestGenerator { fn new(path: &PathBuf) -> Self { let filename = path.file_name().unwrap().to_str().unwrap(); let source = fs::read(&path).unwrap(); let script: ScriptParser = ScriptParser::from_source_and_name(&source, filename).unwrap(); let buffer = String::new(); WastTestGenerator { last_module: 0, last_line: 0, command_no: 0, script_parser: script, buffer: buffer, module_calls: HashMap::new(), } } fn is_fat_test(&self) -> bool { self.command_no > 200 } fn consume(&mut self) { self.buffer.push_str(BANNER); // self.buffer.push_str(&format!( // "// Test based on spectests/{} // #![allow( // warnings, // dead_code // )] // //use wabt::wat2wasm; // use std::{{f32, f64}}; // use wasmer_runtime_core::types::Value; // use wasmer_runtime_core::{{Instance, module::Module}}; // //use crate::spectests::_common::{{ // // generate_imports, // // NaNCheck, // //}};\n\n", // self.filename // )); while let Some(Command { line, kind }) = &self.script_parser.next().unwrap() { self.last_line = line.clone(); self.buffer .push_str(&format!("\n// Line {}\n", self.last_line)); self.visit_command(&kind); self.command_no = self.command_no + 1; } for n in 1..self.last_module + 1 { self.flush_module_calls(n); } } fn command_name(&self) -> String { format!("c{}_l{}", self.command_no, self.last_line) } fn flush_module_calls(&mut self, module: i32) { let calls: Vec<String> = self .module_calls .entry(module) .or_insert(Vec::new()) .iter() .map(|call_str| format!("{}(&mut instance);", call_str)) .collect(); if calls.len() > 0 { self.buffer.push_str( format!( "\n#[test] fn test_module_{}() {{ let mut instance = create_module_{}(); // We group the calls together {} }}\n", module, module, calls.join("\n ") ) .as_str(), ); } self.module_calls.remove(&module); } fn visit_module(&mut self, module: &ModuleBinary, _name: &Option<String>) { let wasm_binary: Vec<u8> = module.clone().into_vec(); let wast_string = wasm2wat(wasm_binary).expect("Can't convert back to wasm"); let last_module = self.last_module; self.flush_module_calls(last_module); self.last_module = self.last_module + 1; // self.module_calls.insert(self.last_module, vec![]); self.buffer.push_str( format!( "fn create_module_{}() -> Instance {{ let module_str = \"{}\"; println!(\"{{}}\", module_str); let wasm_binary = wat2wasm(module_str.as_bytes()).expect(\"WAST not valid or malformed\"); let module = wasmer_runtime_core::compile_with(&wasm_binary[..], &CraneliftCompiler::new()).expect(\"WASM can't be compiled\"); module.instantiate(&generate_imports()).expect(\"WASM can't be instantiated\") }}\n", self.last_module, // We do this to ident four spaces, so it looks aligned to the function body wast_string .replace("\n", "\n ") .replace("\\", "\\\\") .replace("\"", "\\\""), ) .as_str(), ); // We set the start call to the module let start_module_call = format!("start_module_{}", self.last_module); self.buffer.push_str( format!( "\nfn {}(vmctx: &mut Ctx) {{ // TODO Review is explicit start needed? Start now called in runtime::Instance::new() //instance.start(); }}\n", start_module_call ) .as_str(), ); self.module_calls .entry(self.last_module) .or_insert(Vec::new()) .push(start_module_call); } fn visit_assert_invalid(&mut self, module: &ModuleBinary) { let wasm_binary: Vec<u8> = module.clone().into_vec(); // let wast_string = wasm2wat(wasm_binary).expect("Can't convert back to wasm"); let command_name = self.command_name(); self.buffer.push_str( format!( "#[test] fn {}_assert_invalid() {{ let wasm_binary = {:?}; let module = wasmer_runtime_core::compile_with(&wasm_binary, &CraneliftCompiler::new()); assert!(module.is_err(), \"WASM should not compile as is invalid\"); }}\n", command_name, wasm_binary, // We do this to ident four spaces back // String::from_utf8_lossy(&wasm_binary), // wast_string.replace("\n", "\n "), ) .as_str(), ); } // TODO: Refactor repetitive code fn visit_assert_return_arithmetic_nan(&mut self, action: &Action) { match action { Action::Invoke { module: _, field, args, } => { // let return_type = wabt2rust_type(&args[0]); // let func_return = format!(" -> {}", return_type); let assertion = String::from( "assert!(match result { Value::F32(fp) => fp.is_quiet_nan(), Value::F64(fp) => fp.is_quiet_nan(), _ => unimplemented!() })", ); // We map the arguments provided into the raw Arguments provided // to libffi // let args_types: Vec<String> = args.iter().map(wabt2rust_type).collect(); // args_types.push("&Instance".to_string()); let args_values: Vec<String> = args.iter().map(wabt2rust_value).collect(); // args_values.push("&result_object.instance".to_string()); let func_name = format!("{}_assert_return_arithmetic_nan", self.command_name()); self.buffer.push_str( format!( "fn {func_name}(vmctx: &mut Ctx) {{ println!(\"Executing function {{}}\", \"{func_name}\"); let result = instance.call(\"{field}\", &[{args_values}]).unwrap().first().expect(\"Missing result in {func_name}\").clone(); {assertion} }}\n", func_name=func_name, field=field, args_values=args_values.join(", "), assertion=assertion, ) .as_str(), ); // field=field, // args_types=args_types.join(", "), // func_return=func_return, self.module_calls .entry(self.last_module) .or_insert(Vec::new()) .push(func_name); // let mut module_calls = self.module_calls.get(&self.last_module).unwrap(); // module_calls.push(func_name); } _ => {} }; } // PROBLEM: Im assuming the return type from the first argument type // and wabt does gives us the `expected` result // TODO: Refactor repetitive code fn visit_assert_return_canonical_nan(&mut self, action: &Action) { match action { Action::Invoke { module: _, field, args, } => { let _return_type = match &field.as_str() { &"f64.promote_f32" => String::from("f64"), &"f32.promote_f64" => String::from("f32"), _ => wabt2rust_type(&args[0]), }; // let func_return = format!(" -> {}", return_type); let assertion = String::from( "assert!(match result { Value::F32(fp) => fp.is_quiet_nan(), Value::F64(fp) => fp.is_quiet_nan(), _ => unimplemented!() })", ); // We map the arguments provided into the raw Arguments provided // to libffi // let args_types: Vec<String> = args.iter().map(wabt2rust_type).collect(); // args_types.push("&Instance".to_string()); let args_values: Vec<String> = args.iter().map(wabt2rust_value).collect(); // args_values.push("&result_object.instance".to_string()); let func_name = format!("{}_assert_return_canonical_nan", self.command_name()); self.buffer.push_str( format!( "fn {func_name}(vmctx: &mut Ctx) {{ println!(\"Executing function {{}}\", \"{func_name}\"); let result = instance.call(\"{field}\", &[{args_values}]).unwrap().first().expect(\"Missing result in {func_name}\").clone(); {assertion} }}\n", func_name=func_name, field=field, args_values=args_values.join(", "), assertion=assertion, ) .as_str(), ); self.module_calls .entry(self.last_module) .or_insert(Vec::new()) .push(func_name); // let mut module_calls = self.module_calls.get(&self.last_module).unwrap(); // module_calls.push(func_name); } _ => {} }; } fn visit_assert_malformed(&mut self, module: &ModuleBinary) { let wasm_binary: Vec<u8> = module.clone().into_vec(); let command_name = self.command_name(); // let wast_string = wasm2wat(wasm_binary).expect("Can't convert back to wasm"); self.buffer.push_str( format!( "#[test] fn {}_assert_malformed() {{ let wasm_binary = {:?}; let compilation = wasmer_runtime_core::compile_with(&wasm_binary, &CraneliftCompiler::new()); assert!(compilation.is_err(), \"WASM should not compile as is malformed\"); }}\n", command_name, wasm_binary, // We do this to ident four spaces back // String::from_utf8_lossy(&wasm_binary), // wast_string.replace("\n", "\n "), ) .as_str(), ); } // TODO: Refactor repetitive code fn visit_action(&mut self, action: &Action, expected: Option<&Vec<Value>>) -> Option<String> { match action { Action::Invoke { module: _, field, args, } => { let (_func_return, assertion) = match expected { Some(expected) => { let func_return = if expected.len() > 0 { format!(" -> {}", wabt2rust_type(&expected[0])) } else { "".to_string() }; let expected_result = if expected.len() > 0 { wabt2rust_value_bare(&expected[0]) } else { "should not use this expect result".to_string() }; let expected_vec_result = if expected.len() > 0 { format!("Ok(vec![{}])", wabt2rust_value(&expected[0])) } else { "Ok(vec![])".to_string() }; let return_type = if expected.len() > 0 { wabt2rust_type(&expected[0]) } else { "should not use this return type".to_string() }; let return_type_destructure = if expected.len() > 0 { wabt2rust_type_destructure(&expected[0], "result") } else { "should not use this result return type destructure".to_string() }; let _expected_type_destructure = if expected.len() > 0 { wabt2rust_type_destructure(&expected[0], "expected") } else { "should not use this expected return type destructure".to_string() }; let assertion = if expected.len() > 0 && is_nan(&expected[0]) { format!( "let expected = {expected_result}; if let {return_type_destructure} = result.clone().unwrap().first().unwrap() {{ assert!((*result as {return_type}).is_nan()); assert_eq!((*result as {return_type}).is_sign_positive(), (expected as {return_type}).is_sign_positive()); }} else {{ panic!(\"Unexpected result type {{:?}}\", result); }}", expected_result=expected_result, return_type=return_type, return_type_destructure=return_type_destructure ) } else { format!("assert_eq!(result, {});", expected_vec_result) }; (func_return, assertion) } None => ("".to_string(), "".to_string()), }; // We map the arguments provided into the raw Arguments provided // to libffi // let mut args_types: Vec<String> = args.iter().map(wabt2rust_type).collect(); // args_types.push("&Instance".to_string()); let args_values: Vec<String> = args.iter().map(wabt2rust_value).collect(); // args_values.push("&result_object.instance".to_string()); let func_name = format!("{}_action_invoke", self.command_name()); self.buffer.push_str( format!( "fn {func_name}(vmctx: &mut Ctx) -> Result<()> {{ println!(\"Executing function {{}}\", \"{func_name}\"); let result = instance.call(\"{field}\", &[{args_values}]); {assertion} result?; Ok(()) }}\n", func_name = func_name, field = field, args_values = args_values.join(", "), assertion = assertion, ) .as_str(), ); Some(func_name) // let mut module_calls = self.module_calls.get(&self.last_module).unwrap(); // module_calls.push(func_name); } _ => None, } } fn visit_assert_return(&mut self, action: &Action, expected: &Vec<Value>) { let action_fn_name = self.visit_action(action, Some(expected)); if action_fn_name.is_none() { return; } self.module_calls .entry(self.last_module) .or_insert(Vec::new()) .push(action_fn_name.unwrap()); } fn visit_perform_action(&mut self, action: &Action) { let action_fn_name = self.visit_action(action, None); if action_fn_name.is_none() { return; } self.module_calls .entry(self.last_module) .or_insert(Vec::new()) .push(action_fn_name.unwrap()); } fn visit_assert_trap(&mut self, action: &Action) { let action_fn_name = self.visit_action(action, None); if action_fn_name.is_none() { return; } let trap_func_name = format!("{}_assert_trap", self.command_name()); self.buffer.push_str( format!( " #[test] fn {}() {{ let mut instance = create_module_{}(); let result = {}(&mut instance); assert!(result.is_err()); }}\n", trap_func_name, self.last_module, action_fn_name.unwrap(), ) .as_str(), ); // We don't group trap calls as they may cause memory faults // on the instance memory. So we test them alone. // self.module_calls // .entry(self.last_module) // .or_insert(Vec::new()) // .push(trap_func_name); } fn visit_command(&mut self, cmd: &CommandKind) { match cmd { CommandKind::Module { module, name } => { self.visit_module(module, name); } CommandKind::AssertReturn { action, expected } => { self.visit_assert_return(action, expected) } CommandKind::AssertReturnCanonicalNan { action } => { self.visit_assert_return_canonical_nan(action); } CommandKind::AssertReturnArithmeticNan { action } => { self.visit_assert_return_arithmetic_nan(action); } CommandKind::AssertTrap { action, message: _ } => { self.visit_assert_trap(action); } CommandKind::AssertInvalid { module, message: _ } => { self.visit_assert_invalid(module); } CommandKind::AssertMalformed { module, message: _ } => { self.visit_assert_malformed(module); } CommandKind::AssertUninstantiable { module: _, message: _, } => { // Do nothing for now } CommandKind::AssertExhaustion { action: _ } => { // Do nothing for now } CommandKind::AssertUnlinkable { module: _, message: _, } => { // Do nothing for now } CommandKind::Register { name: _, as_name: _, } => { // Do nothing for now } CommandKind::PerformAction(action) => { self.visit_perform_action(action); } } } fn finalize(&self) -> &String { &self.buffer } } fn generate_spectest(out: &mut File, test_name: &str, wast: &PathBuf) -> std::io::Result<()> { let mut generator = WastTestGenerator::new(wast); generator.consume(); let generated_script = generator.finalize(); if !generator.is_fat_test() { out.write(format!("mod test_{} {{\nuse super::*;\n", test_name).as_bytes())?; out.write(generated_script.as_bytes())?; out.write("\n}\n".as_bytes())?; } Ok(()) } pub fn build() -> std::io::Result<()> { let mut out_file = File::create(format!("{}/spectests.rs", env::var("OUT_DIR").unwrap()))?; out_file.write(COMMON.as_bytes())?; for test in TESTS.iter() { let mut wast_path = PathBuf::from(env!("CARGO_MANIFEST_DIR")); wast_path.push(test); generate_spectest( &mut out_file, test.split("/").last().unwrap().split(".").next().unwrap(), &wast_path, )? } Ok(()) }