mod raw { use std::ffi::c_void; extern "C" { pub fn run_on_alternative_stack(stack_end: *mut u64, stack_begin: *mut u64) -> u64; pub fn setjmp(env: *mut c_void) -> i32; pub fn longjmp(env: *mut c_void, val: i32) -> !; } } use crate::codegen::{BkptInfo, BkptMap}; use crate::state::x64::{build_instance_image, read_stack, X64Register, GPR, XMM}; use crate::vm; use libc::{mmap, mprotect, siginfo_t, MAP_ANON, MAP_PRIVATE, PROT_NONE, PROT_READ, PROT_WRITE}; use nix::sys::signal::{ sigaction, SaFlags, SigAction, SigHandler, SigSet, Signal, SIGBUS, SIGFPE, SIGILL, SIGINT, SIGSEGV, SIGTRAP, }; use std::any::Any; use std::cell::UnsafeCell; use std::ffi::c_void; use std::process; use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::Once; pub(crate) unsafe fn run_on_alternative_stack(stack_end: *mut u64, stack_begin: *mut u64) -> u64 { raw::run_on_alternative_stack(stack_end, stack_begin) } const TRAP_STACK_SIZE: usize = 1048576; // 1MB const SETJMP_BUFFER_LEN: usize = 27; type SetJmpBuffer = [i32; SETJMP_BUFFER_LEN]; struct UnwindInfo { jmpbuf: SetJmpBuffer, // in breakpoints: Option, payload: Option>, // out } thread_local! { static UNWIND: UnsafeCell> = UnsafeCell::new(None); } struct InterruptSignalMem(*mut u8); unsafe impl Send for InterruptSignalMem {} unsafe impl Sync for InterruptSignalMem {} const INTERRUPT_SIGNAL_MEM_SIZE: usize = 4096; lazy_static! { static ref INTERRUPT_SIGNAL_MEM: InterruptSignalMem = { let ptr = unsafe { mmap( ::std::ptr::null_mut(), INTERRUPT_SIGNAL_MEM_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0, ) }; if ptr as isize == -1 { panic!("cannot allocate code memory"); } InterruptSignalMem(ptr as _) }; } static INTERRUPT_SIGNAL_DELIVERED: AtomicBool = AtomicBool::new(false); pub unsafe fn get_wasm_interrupt_signal_mem() -> *mut u8 { INTERRUPT_SIGNAL_MEM.0 } pub unsafe fn set_wasm_interrupt() { let mem: *mut u8 = INTERRUPT_SIGNAL_MEM.0; if mprotect(mem as _, INTERRUPT_SIGNAL_MEM_SIZE, PROT_NONE) < 0 { panic!("cannot set PROT_NONE on signal mem"); } } pub unsafe fn clear_wasm_interrupt() { let mem: *mut u8 = INTERRUPT_SIGNAL_MEM.0; if mprotect(mem as _, INTERRUPT_SIGNAL_MEM_SIZE, PROT_READ | PROT_WRITE) < 0 { panic!("cannot set PROT_READ | PROT_WRITE on signal mem"); } } pub unsafe fn catch_unsafe_unwind R>( f: F, breakpoints: Option, ) -> Result> { let unwind = UNWIND.with(|x| x.get()); let old = (*unwind).take(); *unwind = Some(UnwindInfo { jmpbuf: [0; SETJMP_BUFFER_LEN], breakpoints: breakpoints, payload: None, }); if raw::setjmp(&mut (*unwind).as_mut().unwrap().jmpbuf as *mut SetJmpBuffer as *mut _) != 0 { // error let ret = (*unwind).as_mut().unwrap().payload.take().unwrap(); *unwind = old; Err(ret) } else { let ret = f(); // implicit control flow to the error case... *unwind = old; Ok(ret) } } pub unsafe fn begin_unsafe_unwind(e: Box) -> ! { let unwind = UNWIND.with(|x| x.get()); let inner = (*unwind) .as_mut() .expect("not within a catch_unsafe_unwind scope"); inner.payload = Some(e); raw::longjmp(&mut inner.jmpbuf as *mut SetJmpBuffer as *mut _, 0xffff); } unsafe fn with_breakpoint_map) -> R>(f: F) -> R { let unwind = UNWIND.with(|x| x.get()); let inner = (*unwind) .as_mut() .expect("not within a catch_unsafe_unwind scope"); f(inner.breakpoints.as_ref()) } pub fn allocate_and_run R>(size: usize, f: F) -> R { struct Context R, R> { f: Option, ret: Option, } extern "C" fn invoke R, R>(ctx: &mut Context) { let f = ctx.f.take().unwrap(); ctx.ret = Some(f()); } unsafe { let mut ctx = Context { f: Some(f), ret: None, }; assert!(size % 16 == 0); assert!(size >= 4096); let mut stack: Vec = vec![0; size / 8]; let end_offset = stack.len(); stack[end_offset - 4] = invoke:: as usize as u64; // NOTE: Keep this consistent with `image-loading-*.s`. stack[end_offset - 4 - 10] = &mut ctx as *mut Context as usize as u64; // rdi const NUM_SAVED_REGISTERS: usize = 23; let stack_begin = stack .as_mut_ptr() .offset((end_offset - 4 - NUM_SAVED_REGISTERS) as isize); let stack_end = stack.as_mut_ptr().offset(end_offset as isize); raw::run_on_alternative_stack(stack_end, stack_begin); ctx.ret.take().unwrap() } } extern "C" fn signal_trap_handler( signum: ::nix::libc::c_int, siginfo: *mut siginfo_t, ucontext: *mut c_void, ) { unsafe { let fault = get_fault_info(siginfo as _, ucontext); let mut unwind_result: Box = Box::new(()); let should_unwind = allocate_and_run(TRAP_STACK_SIZE, || { let mut is_suspend_signal = false; match Signal::from_c_int(signum) { Ok(SIGTRAP) => { // breakpoint let out: Option>> = with_breakpoint_map(|bkpt_map| { bkpt_map.and_then(|x| x.get(&(fault.ip as usize))).map(|x| { x(BkptInfo { fault: Some(&fault), }) }) }); match out { Some(Ok(())) => { return false; } Some(Err(e)) => { unwind_result = e; return true; } None => {} } } Ok(SIGSEGV) | Ok(SIGBUS) => { if fault.faulting_addr as usize == get_wasm_interrupt_signal_mem() as usize { is_suspend_signal = true; clear_wasm_interrupt(); INTERRUPT_SIGNAL_DELIVERED.store(false, Ordering::SeqCst); } } _ => {} } // TODO: make this safer let ctx = &mut *(fault.known_registers[X64Register::GPR(GPR::R15).to_index().0].unwrap() as *mut vm::Ctx); let rsp = fault.known_registers[X64Register::GPR(GPR::RSP).to_index().0].unwrap(); let msm = (*ctx.module) .runnable_module .get_module_state_map() .unwrap(); let code_base = (*ctx.module).runnable_module.get_code().unwrap().as_ptr() as usize; let es_image = read_stack( &msm, code_base, rsp as usize as *const u64, fault.known_registers, Some(fault.ip as usize as u64), ); if is_suspend_signal { let image = build_instance_image(ctx, es_image); unwind_result = Box::new(image); } else { use colored::*; if es_image.frames.len() > 0 { eprintln!( "\n{}", "Wasmer encountered an error while running your WebAssembly program." .bold() .red() ); es_image.print_backtrace_if_needed(); } // Just let the error propagate otherrwise } true }); if should_unwind { begin_unsafe_unwind(unwind_result); } } } extern "C" fn sigint_handler( _signum: ::nix::libc::c_int, _siginfo: *mut siginfo_t, _ucontext: *mut c_void, ) { if INTERRUPT_SIGNAL_DELIVERED.swap(true, Ordering::SeqCst) { eprintln!("Got another SIGINT before trap is triggered on WebAssembly side, aborting"); process::abort(); } unsafe { set_wasm_interrupt(); } } pub fn ensure_sighandler() { INSTALL_SIGHANDLER.call_once(|| unsafe { install_sighandler(); }); } static INSTALL_SIGHANDLER: Once = Once::new(); unsafe fn install_sighandler() { let sa_trap = SigAction::new( SigHandler::SigAction(signal_trap_handler), SaFlags::SA_ONSTACK, SigSet::empty(), ); sigaction(SIGFPE, &sa_trap).unwrap(); sigaction(SIGILL, &sa_trap).unwrap(); sigaction(SIGSEGV, &sa_trap).unwrap(); sigaction(SIGBUS, &sa_trap).unwrap(); sigaction(SIGTRAP, &sa_trap).unwrap(); let sa_interrupt = SigAction::new( SigHandler::SigAction(sigint_handler), SaFlags::SA_ONSTACK, SigSet::empty(), ); sigaction(SIGINT, &sa_interrupt).unwrap(); } pub struct FaultInfo { pub faulting_addr: *const c_void, pub ip: *const c_void, pub known_registers: [Option; 24], } #[cfg(all(target_os = "linux", target_arch = "x86_64"))] pub unsafe fn get_fault_info(siginfo: *const c_void, ucontext: *const c_void) -> FaultInfo { use libc::{ _libc_xmmreg, ucontext_t, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15, REG_R8, REG_R9, REG_RAX, REG_RBP, REG_RBX, REG_RCX, REG_RDI, REG_RDX, REG_RIP, REG_RSI, REG_RSP, }; fn read_xmm(reg: &_libc_xmmreg) -> u64 { (reg.element[0] as u64) | ((reg.element[1] as u64) << 32) } #[allow(dead_code)] #[repr(C)] struct siginfo_t { si_signo: i32, si_errno: i32, si_code: i32, si_addr: u64, // ... } let siginfo = siginfo as *const siginfo_t; let si_addr = (*siginfo).si_addr; let ucontext = ucontext as *const ucontext_t; let gregs = &(*ucontext).uc_mcontext.gregs; let fpregs = &*(*ucontext).uc_mcontext.fpregs; let mut known_registers: [Option; 24] = [None; 24]; known_registers[X64Register::GPR(GPR::R15).to_index().0] = Some(gregs[REG_R15 as usize] as _); known_registers[X64Register::GPR(GPR::R14).to_index().0] = Some(gregs[REG_R14 as usize] as _); known_registers[X64Register::GPR(GPR::R13).to_index().0] = Some(gregs[REG_R13 as usize] as _); known_registers[X64Register::GPR(GPR::R12).to_index().0] = Some(gregs[REG_R12 as usize] as _); known_registers[X64Register::GPR(GPR::R11).to_index().0] = Some(gregs[REG_R11 as usize] as _); known_registers[X64Register::GPR(GPR::R10).to_index().0] = Some(gregs[REG_R10 as usize] as _); known_registers[X64Register::GPR(GPR::R9).to_index().0] = Some(gregs[REG_R9 as usize] as _); known_registers[X64Register::GPR(GPR::R8).to_index().0] = Some(gregs[REG_R8 as usize] as _); known_registers[X64Register::GPR(GPR::RSI).to_index().0] = Some(gregs[REG_RSI as usize] as _); known_registers[X64Register::GPR(GPR::RDI).to_index().0] = Some(gregs[REG_RDI as usize] as _); known_registers[X64Register::GPR(GPR::RDX).to_index().0] = Some(gregs[REG_RDX as usize] as _); known_registers[X64Register::GPR(GPR::RCX).to_index().0] = Some(gregs[REG_RCX as usize] as _); known_registers[X64Register::GPR(GPR::RBX).to_index().0] = Some(gregs[REG_RBX as usize] as _); known_registers[X64Register::GPR(GPR::RAX).to_index().0] = Some(gregs[REG_RAX as usize] as _); known_registers[X64Register::GPR(GPR::RBP).to_index().0] = Some(gregs[REG_RBP as usize] as _); known_registers[X64Register::GPR(GPR::RSP).to_index().0] = Some(gregs[REG_RSP as usize] as _); known_registers[X64Register::XMM(XMM::XMM0).to_index().0] = Some(read_xmm(&fpregs._xmm[0])); known_registers[X64Register::XMM(XMM::XMM1).to_index().0] = Some(read_xmm(&fpregs._xmm[1])); known_registers[X64Register::XMM(XMM::XMM2).to_index().0] = Some(read_xmm(&fpregs._xmm[2])); known_registers[X64Register::XMM(XMM::XMM3).to_index().0] = Some(read_xmm(&fpregs._xmm[3])); known_registers[X64Register::XMM(XMM::XMM4).to_index().0] = Some(read_xmm(&fpregs._xmm[4])); known_registers[X64Register::XMM(XMM::XMM5).to_index().0] = Some(read_xmm(&fpregs._xmm[5])); known_registers[X64Register::XMM(XMM::XMM6).to_index().0] = Some(read_xmm(&fpregs._xmm[6])); known_registers[X64Register::XMM(XMM::XMM7).to_index().0] = Some(read_xmm(&fpregs._xmm[7])); FaultInfo { faulting_addr: si_addr as usize as _, ip: gregs[REG_RIP as usize] as _, known_registers, } } #[cfg(all(target_os = "macos", target_arch = "x86_64"))] pub unsafe fn get_fault_info(siginfo: *const c_void, ucontext: *const c_void) -> FaultInfo { #[allow(dead_code)] #[repr(C)] struct ucontext_t { uc_onstack: u32, uc_sigmask: u32, uc_stack: libc::stack_t, uc_link: *const ucontext_t, uc_mcsize: u64, uc_mcontext: *const mcontext_t, } #[repr(C)] struct exception_state { trapno: u16, cpu: u16, err: u32, faultvaddr: u64, } #[repr(C)] struct regs { rax: u64, rbx: u64, rcx: u64, rdx: u64, rdi: u64, rsi: u64, rbp: u64, rsp: u64, r8: u64, r9: u64, r10: u64, r11: u64, r12: u64, r13: u64, r14: u64, r15: u64, rip: u64, rflags: u64, cs: u64, fs: u64, gs: u64, } #[repr(C)] struct fpstate { _unused: [u8; 168], xmm: [[u64; 2]; 8], } #[allow(dead_code)] #[repr(C)] struct mcontext_t { es: exception_state, ss: regs, fs: fpstate, } let siginfo = siginfo as *const siginfo_t; let si_addr = (*siginfo).si_addr; let ucontext = ucontext as *const ucontext_t; let ss = &(*(*ucontext).uc_mcontext).ss; let fs = &(*(*ucontext).uc_mcontext).fs; let mut known_registers: [Option; 24] = [None; 24]; known_registers[X64Register::GPR(GPR::R15).to_index().0] = Some(ss.r15); known_registers[X64Register::GPR(GPR::R14).to_index().0] = Some(ss.r14); known_registers[X64Register::GPR(GPR::R13).to_index().0] = Some(ss.r13); known_registers[X64Register::GPR(GPR::R12).to_index().0] = Some(ss.r12); known_registers[X64Register::GPR(GPR::R11).to_index().0] = Some(ss.r11); known_registers[X64Register::GPR(GPR::R10).to_index().0] = Some(ss.r10); known_registers[X64Register::GPR(GPR::R9).to_index().0] = Some(ss.r9); known_registers[X64Register::GPR(GPR::R8).to_index().0] = Some(ss.r8); known_registers[X64Register::GPR(GPR::RSI).to_index().0] = Some(ss.rsi); known_registers[X64Register::GPR(GPR::RDI).to_index().0] = Some(ss.rdi); known_registers[X64Register::GPR(GPR::RDX).to_index().0] = Some(ss.rdx); known_registers[X64Register::GPR(GPR::RCX).to_index().0] = Some(ss.rcx); known_registers[X64Register::GPR(GPR::RBX).to_index().0] = Some(ss.rbx); known_registers[X64Register::GPR(GPR::RAX).to_index().0] = Some(ss.rax); known_registers[X64Register::GPR(GPR::RBP).to_index().0] = Some(ss.rbp); known_registers[X64Register::GPR(GPR::RSP).to_index().0] = Some(ss.rsp); known_registers[X64Register::XMM(XMM::XMM0).to_index().0] = Some(fs.xmm[0][0]); known_registers[X64Register::XMM(XMM::XMM1).to_index().0] = Some(fs.xmm[1][0]); known_registers[X64Register::XMM(XMM::XMM2).to_index().0] = Some(fs.xmm[2][0]); known_registers[X64Register::XMM(XMM::XMM3).to_index().0] = Some(fs.xmm[3][0]); known_registers[X64Register::XMM(XMM::XMM4).to_index().0] = Some(fs.xmm[4][0]); known_registers[X64Register::XMM(XMM::XMM5).to_index().0] = Some(fs.xmm[5][0]); known_registers[X64Register::XMM(XMM::XMM6).to_index().0] = Some(fs.xmm[6][0]); known_registers[X64Register::XMM(XMM::XMM7).to_index().0] = Some(fs.xmm[7][0]); FaultInfo { faulting_addr: si_addr, ip: ss.rip as _, known_registers, } }