use crate::{cache::BackendCache, trampoline::Trampolines}; use crate::{ libcalls, relocation::{ ExternalRelocation, LibCall, LocalRelocation, LocalTrapSink, Reloc, RelocSink, RelocationType, TrapSink, VmCall, VmCallKind, }, signal::HandlerData, }; use rayon::prelude::*; use byteorder::{ByteOrder, LittleEndian}; use cranelift_codegen::{ir, isa, Context}; use std::{ mem, ptr::{write_unaligned, NonNull}, sync::Arc, }; use wasmer_runtime_core::cache::Error as CacheError; use wasmer_runtime_core::{ self, backend::{ sys::{Memory, Protect}, SigRegistry, }, error::{CompileError, CompileResult}, module::ModuleInfo, structures::{Map, SliceMap, TypedIndex}, types::{FuncSig, LocalFuncIndex, SigIndex}, vm, vmcalls, }; extern "C" { #[cfg(not(target_os = "windows"))] pub fn __rust_probestack(); #[cfg(all(target_os = "windows", target_pointer_width = "64"))] pub fn __chkstk(); } fn lookup_func( map: &SliceMap, memory: &Memory, local_func_index: LocalFuncIndex, ) -> Option> { let offset = *map.get(local_func_index)?; let ptr = unsafe { memory.as_ptr().add(offset) }; NonNull::new(ptr).map(|nonnull| nonnull.cast()) } #[allow(dead_code)] pub struct FuncResolverBuilder { map: Map, memory: Memory, local_relocs: Map>, external_relocs: Map>, import_len: usize, } impl FuncResolverBuilder { pub fn new_from_backend_cache( backend_cache: BackendCache, mut code: Memory, info: &ModuleInfo, ) -> Result<(Self, Arc, HandlerData), CacheError> { unsafe { code.protect(.., Protect::ReadWrite) .map_err(|e| CacheError::Unknown(e.to_string()))?; } let handler_data = HandlerData::new(backend_cache.trap_sink, code.as_ptr() as _, code.size()); Ok(( Self { map: backend_cache.offsets, memory: code, local_relocs: Map::new(), external_relocs: backend_cache.external_relocs, import_len: info.imported_functions.len(), }, Arc::new(Trampolines::from_trampoline_cache( backend_cache.trampolines, )), handler_data, )) } pub fn new( isa: &isa::TargetIsa, function_bodies: Map, info: &ModuleInfo, ) -> CompileResult<(Self, HandlerData)> { let num_func_bodies = function_bodies.len(); let mut local_relocs = Map::with_capacity(num_func_bodies); let mut external_relocs = Map::with_capacity(num_func_bodies); let mut trap_sink = TrapSink::new(); let compiled_functions: Result, (RelocSink, LocalTrapSink))>, CompileError> = function_bodies .into_vec() .par_iter() .map_init( || Context::new(), |ctx, func| { let mut code_buf = Vec::new(); ctx.func = func.to_owned(); let mut reloc_sink = RelocSink::new(); let mut local_trap_sink = LocalTrapSink::new(); ctx.compile_and_emit( isa, &mut code_buf, &mut reloc_sink, &mut local_trap_sink, ) .map_err(|e| CompileError::InternalError { msg: e.to_string() })?; ctx.clear(); Ok((code_buf, (reloc_sink, local_trap_sink))) }, ) .collect(); let compiled_functions = compiled_functions?; let mut total_size = 0; // We separate into two iterators, one iterable and one into iterable let (code_bufs, sinks): (Vec>, Vec<(RelocSink, LocalTrapSink)>) = compiled_functions.into_iter().unzip(); for (code_buf, (reloc_sink, mut local_trap_sink)) in code_bufs.iter().zip(sinks.into_iter()) { // Clear the local trap sink and consolidate all trap info // into a single location. trap_sink.drain_local(total_size, &mut local_trap_sink); // Round up each function's size to pointer alignment. total_size += round_up(code_buf.len(), mem::size_of::()); local_relocs.push(reloc_sink.local_relocs.into_boxed_slice()); external_relocs.push(reloc_sink.external_relocs.into_boxed_slice()); } let mut memory = Memory::with_size(total_size) .map_err(|e| CompileError::InternalError { msg: e.to_string() })?; unsafe { memory .protect(.., Protect::ReadWrite) .map_err(|e| CompileError::InternalError { msg: e.to_string() })?; } // Normally, excess memory due to alignment and page-rounding would // be filled with null-bytes. On x86 (and x86_64), // "\x00\x00" disassembles to "add byte ptr [eax],al". // // If the instruction pointer falls out of its designated area, // it would be better if it would immediately crash instead of // continuing on and causing non-local issues. // // "\xCC" disassembles to "int3", which will immediately cause // an interrupt that we can catch if we want. for i in unsafe { memory.as_slice_mut() } { *i = 0xCC; } let mut map = Map::with_capacity(num_func_bodies); let mut previous_end = 0; for compiled in code_bufs.iter() { let new_end = previous_end + round_up(compiled.len(), mem::size_of::()); unsafe { memory.as_slice_mut()[previous_end..previous_end + compiled.len()] .copy_from_slice(&compiled[..]); } map.push(previous_end); previous_end = new_end; } let handler_data = HandlerData::new(Arc::new(trap_sink), memory.as_ptr() as _, memory.size()); let mut func_resolver_builder = Self { map, memory, local_relocs, external_relocs, import_len: info.imported_functions.len(), }; func_resolver_builder.relocate_locals(); Ok((func_resolver_builder, handler_data)) } fn relocate_locals(&mut self) { for (index, relocs) in self.local_relocs.iter() { for ref reloc in relocs.iter() { let local_func_index = LocalFuncIndex::new(reloc.target.index() - self.import_len); let target_func_address = lookup_func(&self.map, &self.memory, local_func_index) .unwrap() .as_ptr() as usize; // We need the address of the current function // because these calls are relative. let func_addr = lookup_func(&self.map, &self.memory, index) .unwrap() .as_ptr() as usize; unsafe { let reloc_address = func_addr + reloc.offset as usize; let reloc_delta = target_func_address .wrapping_sub(reloc_address) .wrapping_add(reloc.addend as usize); write_unaligned(reloc_address as *mut u32, reloc_delta as u32); } } } } pub fn finalize( mut self, signatures: &SliceMap, trampolines: Arc, handler_data: HandlerData, ) -> CompileResult<(FuncResolver, BackendCache)> { for (index, relocs) in self.external_relocs.iter() { for ref reloc in relocs.iter() { let target_func_address: isize = match reloc.target { RelocationType::LibCall(libcall) => match libcall { LibCall::CeilF32 => libcalls::ceilf32 as isize, LibCall::FloorF32 => libcalls::floorf32 as isize, LibCall::TruncF32 => libcalls::truncf32 as isize, LibCall::NearestF32 => libcalls::nearbyintf32 as isize, LibCall::CeilF64 => libcalls::ceilf64 as isize, LibCall::FloorF64 => libcalls::floorf64 as isize, LibCall::TruncF64 => libcalls::truncf64 as isize, LibCall::NearestF64 => libcalls::nearbyintf64 as isize, #[cfg(all(target_pointer_width = "64", target_os = "windows"))] LibCall::Probestack => __chkstk as isize, #[cfg(not(target_os = "windows"))] LibCall::Probestack => __rust_probestack as isize, }, RelocationType::Intrinsic(ref name) => match name.as_str() { "i32print" => i32_print as isize, "i64print" => i64_print as isize, "f32print" => f32_print as isize, "f64print" => f64_print as isize, "strtdbug" => start_debug as isize, "enddbug" => end_debug as isize, _ => Err(CompileError::InternalError { msg: format!("unexpected intrinsic: {}", name), })?, }, RelocationType::VmCall(vmcall) => match vmcall { VmCall::Local(kind) => match kind { VmCallKind::StaticMemoryGrow => vmcalls::local_static_memory_grow as _, VmCallKind::StaticMemorySize => vmcalls::local_static_memory_size as _, VmCallKind::SharedStaticMemoryGrow => unimplemented!(), VmCallKind::SharedStaticMemorySize => unimplemented!(), VmCallKind::DynamicMemoryGrow => { vmcalls::local_dynamic_memory_grow as _ } VmCallKind::DynamicMemorySize => { vmcalls::local_dynamic_memory_size as _ } }, VmCall::Import(kind) => match kind { VmCallKind::StaticMemoryGrow => { vmcalls::imported_static_memory_grow as _ } VmCallKind::StaticMemorySize => { vmcalls::imported_static_memory_size as _ } VmCallKind::SharedStaticMemoryGrow => unimplemented!(), VmCallKind::SharedStaticMemorySize => unimplemented!(), VmCallKind::DynamicMemoryGrow => { vmcalls::imported_dynamic_memory_grow as _ } VmCallKind::DynamicMemorySize => { vmcalls::imported_dynamic_memory_size as _ } }, }, RelocationType::Signature(sig_index) => { let signature = SigRegistry.lookup_signature_ref(&signatures[sig_index]); let sig_index = SigRegistry.lookup_sig_index(signature); sig_index.index() as _ } }; // We need the address of the current function // because some of these calls are relative. let func_addr = lookup_func(&self.map, &self.memory, index) .unwrap() .as_ptr() as usize; // Determine relocation type and apply relocation. match reloc.reloc { Reloc::Abs8 => { let ptr_to_write = (target_func_address as u64) .checked_add(reloc.addend as u64) .unwrap(); let empty_space_offset = self.map[index] + reloc.offset as usize; let ptr_slice = unsafe { &mut self.memory.as_slice_mut() [empty_space_offset..empty_space_offset + 8] }; LittleEndian::write_u64(ptr_slice, ptr_to_write); } Reloc::X86PCRel4 | Reloc::X86CallPCRel4 => unsafe { let reloc_address = (func_addr as usize) + reloc.offset as usize; let reloc_delta = target_func_address .wrapping_sub(reloc_address as isize) .wrapping_add(reloc.addend as isize); write_unaligned(reloc_address as *mut u32, reloc_delta as u32); }, } } } unsafe { self.memory .protect(.., Protect::ReadExec) .map_err(|e| CompileError::InternalError { msg: e.to_string() })?; } let backend_cache = BackendCache { external_relocs: self.external_relocs.clone(), offsets: self.map.clone(), trap_sink: handler_data.trap_data, trampolines: trampolines.to_trampoline_cache(), }; Ok(( FuncResolver { map: self.map, memory: Arc::new(self.memory), }, backend_cache, )) } } unsafe impl Sync for FuncResolver {} unsafe impl Send for FuncResolver {} /// Resolves a function index to a function address. pub struct FuncResolver { map: Map, pub(crate) memory: Arc, } impl FuncResolver { pub fn lookup(&self, index: LocalFuncIndex) -> Option> { lookup_func(&self.map, &self.memory, index) } } #[inline] fn round_up(n: usize, multiple: usize) -> usize { (n + multiple - 1) & !(multiple - 1) } extern "C" fn i32_print(_ctx: &mut vm::Ctx, n: i32) { eprint!(" i32: {},", n); } extern "C" fn i64_print(_ctx: &mut vm::Ctx, n: i64) { eprint!(" i64: {},", n); } extern "C" fn f32_print(_ctx: &mut vm::Ctx, n: f32) { eprint!(" f32: {},", n); } extern "C" fn f64_print(_ctx: &mut vm::Ctx, n: f64) { eprint!(" f64: {},", n); } extern "C" fn start_debug(ctx: &mut vm::Ctx, func_index: u32) { if let Some(symbol_map) = unsafe { ctx.borrow_symbol_map() } { if let Some(fn_name) = symbol_map.get(&func_index) { eprint!("func ({} ({})), args: [", fn_name, func_index); return; } } eprint!("func ({}), args: [", func_index); } extern "C" fn end_debug(_ctx: &mut vm::Ctx) { eprintln!(" ]"); }