wasmer/lib/llvm-backend/src/code.rs

8005 lines
338 KiB
Rust
Raw Normal View History

2019-02-09 23:53:40 +00:00
use inkwell::{
builder::Builder,
context::Context,
module::{Linkage, Module},
passes::PassManager,
targets::{CodeModel, InitializationConfig, RelocMode, Target, TargetMachine},
types::{BasicType, BasicTypeEnum, FunctionType, PointerType, VectorType},
values::{
BasicValue, BasicValueEnum, FloatValue, FunctionValue, IntValue, MetadataValue, PhiValue,
PointerValue, VectorValue,
},
AddressSpace, AtomicOrdering, AtomicRMWBinOp, FloatPredicate, IntPredicate, OptimizationLevel,
2019-02-09 23:53:40 +00:00
};
2019-02-12 03:34:04 +00:00
use smallvec::SmallVec;
2019-07-17 18:43:04 +00:00
use std::cell::RefCell;
use std::rc::Rc;
2019-05-26 16:13:37 +00:00
use std::sync::{Arc, RwLock};
2019-02-09 23:53:40 +00:00
use wasmer_runtime_core::{
backend::{Backend, CacheGen, CompilerConfig, Token},
2019-05-06 01:11:47 +00:00
cache::{Artifact, Error as CacheError},
codegen::*,
memory::MemoryType,
2019-05-06 01:11:47 +00:00
module::{ModuleInfo, ModuleInner},
2019-05-07 04:41:31 +00:00
structures::{Map, TypedIndex},
2019-02-15 02:08:20 +00:00
types::{
FuncIndex, FuncSig, GlobalIndex, LocalOrImport, MemoryIndex, SigIndex, TableIndex, Type,
2019-02-15 02:08:20 +00:00
},
};
2019-05-07 04:41:31 +00:00
use wasmparser::{BinaryReaderError, MemoryImmediate, Operator, Type as WpType};
2019-02-09 23:53:40 +00:00
2019-05-07 04:41:31 +00:00
use crate::backend::LLVMBackend;
use crate::intrinsics::{CtxType, GlobalCache, Intrinsics, MemoryCache};
2019-07-01 23:11:38 +00:00
use crate::read_info::{blocktype_to_type, type_to_type};
use crate::stackmap::{StackmapEntry, StackmapEntryKind, StackmapRegistry, ValueSemantic};
use crate::state::{ControlFrame, ExtraInfo, IfElseState, State};
use crate::trampolines::generate_trampolines;
2019-02-09 23:53:40 +00:00
2019-08-16 02:13:00 +00:00
fn func_sig_to_llvm(
context: &Context,
intrinsics: &Intrinsics,
sig: &FuncSig,
type_to_llvm: fn(intrinsics: &Intrinsics, ty: Type) -> BasicTypeEnum,
) -> FunctionType {
2019-02-12 03:34:04 +00:00
let user_param_types = sig.params().iter().map(|&ty| type_to_llvm(intrinsics, ty));
let param_types: Vec<_> = std::iter::once(intrinsics.ctx_ptr_ty.as_basic_type_enum())
.chain(user_param_types)
.collect();
2019-02-09 23:53:40 +00:00
match sig.returns() {
&[] => intrinsics.void_ty.fn_type(&param_types, false),
&[single_value] => type_to_llvm(intrinsics, single_value).fn_type(&param_types, false),
2019-02-09 23:53:40 +00:00
returns @ _ => {
let basic_types: Vec<_> = returns
.iter()
2019-02-12 03:34:04 +00:00
.map(|&ty| type_to_llvm(intrinsics, ty))
2019-02-09 23:53:40 +00:00
.collect();
context
.struct_type(&basic_types, false)
.fn_type(&param_types, false)
}
}
}
2019-02-12 03:34:04 +00:00
fn type_to_llvm(intrinsics: &Intrinsics, ty: Type) -> BasicTypeEnum {
2019-02-09 23:53:40 +00:00
match ty {
2019-02-12 03:34:04 +00:00
Type::I32 => intrinsics.i32_ty.as_basic_type_enum(),
Type::I64 => intrinsics.i64_ty.as_basic_type_enum(),
Type::F32 => intrinsics.f32_ty.as_basic_type_enum(),
Type::F64 => intrinsics.f64_ty.as_basic_type_enum(),
Type::V128 => intrinsics.i128_ty.as_basic_type_enum(),
2019-02-09 23:53:40 +00:00
}
}
fn type_to_llvm_int_only(intrinsics: &Intrinsics, ty: Type) -> BasicTypeEnum {
match ty {
Type::I32 | Type::F32 => intrinsics.i32_ty.as_basic_type_enum(),
Type::I64 | Type::F64 => intrinsics.i64_ty.as_basic_type_enum(),
Type::V128 => intrinsics.i128_ty.as_basic_type_enum(),
}
}
// Create a vector where each lane contains the same value.
fn splat_vector(
builder: &Builder,
intrinsics: &Intrinsics,
value: BasicValueEnum,
vec_ty: VectorType,
name: &str,
) -> VectorValue {
// Use insert_element to insert the element into an undef vector, then use
// shuffle vector to copy that lane to all lanes.
builder.build_shuffle_vector(
2019-07-10 21:28:07 +00:00
builder.build_insert_element(vec_ty.get_undef(), value, intrinsics.i32_zero, ""),
vec_ty.get_undef(),
intrinsics.i32_ty.vec_type(vec_ty.get_size()).const_zero(),
name,
)
}
// Convert floating point vector to integer and saturate when out of range.
// TODO: generalize to non-vectors using FloatMathType, IntMathType, etc. for
// https://github.com/WebAssembly/nontrapping-float-to-int-conversions/blob/master/proposals/nontrapping-float-to-int-conversion/Overview.md
fn trunc_sat(
builder: &Builder,
intrinsics: &Intrinsics,
fvec_ty: VectorType,
ivec_ty: VectorType,
lower_bound: u64, // Exclusive (lowest representable value)
upper_bound: u64, // Exclusive (greatest representable value)
int_min_value: u64,
int_max_value: u64,
value: IntValue,
name: &str,
) -> IntValue {
// a) Compare vector with itself to identify NaN lanes.
// b) Compare vector with splat of inttofp(upper_bound) to identify
// lanes that need to saturate to max.
// c) Compare vector with splat of inttofp(lower_bound) to identify
// lanes that need to saturate to min.
// d) Use vector select (not shuffle) to pick from either the
// splat vector or the input vector depending on whether the
// comparison indicates that we have an unrepresentable value. Replace
// unrepresentable values with zero.
// e) Now that the value is safe, fpto[su]i it.
// f) Use our previous comparison results to replace certain zeros with
// int_min or int_max.
let is_signed = int_min_value != 0;
let ivec_element_ty = ivec_ty.get_element_type().into_int_type();
let int_min_value = splat_vector(
builder,
intrinsics,
ivec_element_ty
2019-07-18 20:40:24 +00:00
.const_int(int_min_value, is_signed)
.as_basic_value_enum(),
ivec_ty,
"",
);
let int_max_value = splat_vector(
builder,
intrinsics,
ivec_element_ty
2019-07-18 20:40:24 +00:00
.const_int(int_max_value, is_signed)
.as_basic_value_enum(),
ivec_ty,
"",
);
let lower_bound = if is_signed {
builder.build_signed_int_to_float(
ivec_element_ty.const_int(lower_bound, is_signed),
fvec_ty.get_element_type().into_float_type(),
"",
)
} else {
builder.build_unsigned_int_to_float(
ivec_element_ty.const_int(lower_bound, is_signed),
fvec_ty.get_element_type().into_float_type(),
"",
)
};
let upper_bound = if is_signed {
builder.build_signed_int_to_float(
ivec_element_ty.const_int(upper_bound, is_signed),
fvec_ty.get_element_type().into_float_type(),
"",
)
} else {
builder.build_unsigned_int_to_float(
ivec_element_ty.const_int(upper_bound, is_signed),
fvec_ty.get_element_type().into_float_type(),
"",
)
};
let value = builder
.build_bitcast(value, fvec_ty, "")
.into_vector_value();
let zero = fvec_ty.const_zero();
let lower_bound = splat_vector(
builder,
intrinsics,
lower_bound.as_basic_value_enum(),
fvec_ty,
"",
);
let upper_bound = splat_vector(
builder,
intrinsics,
upper_bound.as_basic_value_enum(),
fvec_ty,
"",
);
let nan_cmp = builder.build_float_compare(FloatPredicate::UNO, value, zero, "nan");
2019-07-18 20:40:24 +00:00
let above_upper_bound_cmp =
builder.build_float_compare(FloatPredicate::OGT, value, upper_bound, "above_upper_bound");
let below_lower_bound_cmp =
builder.build_float_compare(FloatPredicate::OLT, value, lower_bound, "below_lower_bound");
let not_representable = builder.build_or(
builder.build_or(nan_cmp, above_upper_bound_cmp, ""),
below_lower_bound_cmp,
"not_representable_as_int",
);
let value = builder
.build_select(not_representable, zero, value, "safe_to_convert")
.into_vector_value();
let value = if is_signed {
builder.build_float_to_signed_int(value, ivec_ty, "as_int")
} else {
builder.build_float_to_unsigned_int(value, ivec_ty, "as_int")
};
let value = builder
.build_select(above_upper_bound_cmp, int_max_value, value, "")
.into_vector_value();
let res = builder
.build_select(below_lower_bound_cmp, int_min_value, value, name)
.into_vector_value();
builder
.build_bitcast(res, intrinsics.i128_ty, "")
.into_int_value()
}
fn trap_if_not_representable_as_int(
2019-03-05 19:50:56 +00:00
builder: &Builder,
intrinsics: &Intrinsics,
context: &Context,
function: &FunctionValue,
lower_bound: u64, // Inclusive (not a trapping value)
upper_bound: u64, // Inclusive (not a trapping value)
2019-03-05 19:50:56 +00:00
value: FloatValue,
) {
let float_ty = value.get_type();
let int_ty = if float_ty == intrinsics.f32_ty {
intrinsics.i32_ty
} else {
intrinsics.i64_ty
};
2019-03-05 19:50:56 +00:00
let lower_bound = builder
.build_bitcast(int_ty.const_int(lower_bound, false), float_ty, "")
.into_float_value();
let upper_bound = builder
.build_bitcast(int_ty.const_int(upper_bound, false), float_ty, "")
.into_float_value();
// The 'U' in the float predicate is short for "unordered" which means that
// the comparison will compare true if either operand is a NaN. Thus, NaNs
// are out of bounds.
let above_upper_bound_cmp =
builder.build_float_compare(FloatPredicate::UGT, value, upper_bound, "above_upper_bound");
let below_lower_bound_cmp =
builder.build_float_compare(FloatPredicate::ULT, value, lower_bound, "below_lower_bound");
let out_of_bounds = builder.build_or(
above_upper_bound_cmp,
below_lower_bound_cmp,
"out_of_bounds",
2019-03-05 19:50:56 +00:00
);
let failure_block = context.append_basic_block(function, "conversion_failure_block");
let continue_block = context.append_basic_block(function, "conversion_success_block");
2019-03-05 19:50:56 +00:00
builder.build_conditional_branch(out_of_bounds, &failure_block, &continue_block);
2019-03-05 19:50:56 +00:00
builder.position_at_end(&failure_block);
builder.build_call(
intrinsics.throw_trap,
&[intrinsics.trap_illegal_arithmetic],
"throw",
);
builder.build_unreachable();
builder.position_at_end(&continue_block);
}
2019-03-04 23:51:45 +00:00
fn trap_if_zero_or_overflow(
builder: &Builder,
intrinsics: &Intrinsics,
context: &Context,
function: &FunctionValue,
left: IntValue,
right: IntValue,
) {
let int_type = left.get_type();
let (min_value, neg_one_value) = if int_type == intrinsics.i32_ty {
let min_value = int_type.const_int(i32::min_value() as u64, false);
let neg_one_value = int_type.const_int(-1i32 as u32 as u64, false);
(min_value, neg_one_value)
} else if int_type == intrinsics.i64_ty {
let min_value = int_type.const_int(i64::min_value() as u64, false);
let neg_one_value = int_type.const_int(-1i64 as u64, false);
(min_value, neg_one_value)
} else {
unreachable!()
};
let should_trap = builder.build_or(
builder.build_int_compare(
IntPredicate::EQ,
right,
int_type.const_int(0, false),
"divisor_is_zero",
),
builder.build_and(
builder.build_int_compare(IntPredicate::EQ, left, min_value, "left_is_min"),
builder.build_int_compare(IntPredicate::EQ, right, neg_one_value, "right_is_neg_one"),
"div_will_overflow",
),
"div_should_trap",
);
let should_trap = builder
.build_call(
intrinsics.expect_i1,
&[
should_trap.as_basic_value_enum(),
intrinsics.i1_ty.const_int(0, false).as_basic_value_enum(),
],
"should_trap_expect",
)
.try_as_basic_value()
.left()
.unwrap()
.into_int_value();
let shouldnt_trap_block = context.append_basic_block(function, "shouldnt_trap_block");
let should_trap_block = context.append_basic_block(function, "should_trap_block");
builder.build_conditional_branch(should_trap, &should_trap_block, &shouldnt_trap_block);
builder.position_at_end(&should_trap_block);
builder.build_call(
intrinsics.throw_trap,
2019-03-05 03:56:02 +00:00
&[intrinsics.trap_illegal_arithmetic],
2019-03-04 23:51:45 +00:00
"throw",
);
builder.build_unreachable();
builder.position_at_end(&shouldnt_trap_block);
}
fn trap_if_zero(
builder: &Builder,
intrinsics: &Intrinsics,
context: &Context,
function: &FunctionValue,
value: IntValue,
) {
let int_type = value.get_type();
let should_trap = builder.build_int_compare(
IntPredicate::EQ,
value,
int_type.const_int(0, false),
"divisor_is_zero",
);
let should_trap = builder
.build_call(
intrinsics.expect_i1,
&[
should_trap.as_basic_value_enum(),
intrinsics.i1_ty.const_int(0, false).as_basic_value_enum(),
],
"should_trap_expect",
)
.try_as_basic_value()
.left()
.unwrap()
.into_int_value();
let shouldnt_trap_block = context.append_basic_block(function, "shouldnt_trap_block");
let should_trap_block = context.append_basic_block(function, "should_trap_block");
builder.build_conditional_branch(should_trap, &should_trap_block, &shouldnt_trap_block);
builder.position_at_end(&should_trap_block);
builder.build_call(
intrinsics.throw_trap,
2019-03-05 03:56:02 +00:00
&[intrinsics.trap_illegal_arithmetic],
2019-03-04 23:51:45 +00:00
"throw",
);
builder.build_unreachable();
builder.position_at_end(&shouldnt_trap_block);
}
fn v128_into_int_vec(
builder: &Builder,
intrinsics: &Intrinsics,
value: BasicValueEnum,
info: ExtraInfo,
int_vec_ty: VectorType,
) -> VectorValue {
let value = match info {
ExtraInfo::None => value,
ExtraInfo::PendingF32NaN => {
let value = builder.build_bitcast(value, intrinsics.f32x4_ty, "");
canonicalize_nans(builder, intrinsics, value)
}
ExtraInfo::PendingF64NaN => {
let value = builder.build_bitcast(value, intrinsics.f64x2_ty, "");
canonicalize_nans(builder, intrinsics, value)
}
};
builder
.build_bitcast(value, int_vec_ty, "")
.into_vector_value()
}
fn v128_into_i8x16(
builder: &Builder,
intrinsics: &Intrinsics,
value: BasicValueEnum,
info: ExtraInfo,
) -> VectorValue {
v128_into_int_vec(builder, intrinsics, value, info, intrinsics.i8x16_ty)
}
fn v128_into_i16x8(
builder: &Builder,
intrinsics: &Intrinsics,
value: BasicValueEnum,
info: ExtraInfo,
) -> VectorValue {
v128_into_int_vec(builder, intrinsics, value, info, intrinsics.i16x8_ty)
}
fn v128_into_i32x4(
builder: &Builder,
intrinsics: &Intrinsics,
value: BasicValueEnum,
info: ExtraInfo,
) -> VectorValue {
v128_into_int_vec(builder, intrinsics, value, info, intrinsics.i32x4_ty)
}
fn v128_into_i64x2(
builder: &Builder,
intrinsics: &Intrinsics,
value: BasicValueEnum,
info: ExtraInfo,
) -> VectorValue {
v128_into_int_vec(builder, intrinsics, value, info, intrinsics.i64x2_ty)
}
// If the value is pending a 64-bit canonicalization, do it now.
// Return a f32x4 vector.
fn v128_into_f32x4(
builder: &Builder,
intrinsics: &Intrinsics,
value: BasicValueEnum,
info: ExtraInfo,
) -> VectorValue {
let value = if info == ExtraInfo::PendingF64NaN {
let value = builder.build_bitcast(value, intrinsics.f64x2_ty, "");
canonicalize_nans(builder, intrinsics, value)
} else {
value
};
builder
.build_bitcast(value, intrinsics.f32x4_ty, "")
.into_vector_value()
}
// If the value is pending a 32-bit canonicalization, do it now.
// Return a f64x2 vector.
fn v128_into_f64x2(
builder: &Builder,
intrinsics: &Intrinsics,
value: BasicValueEnum,
info: ExtraInfo,
) -> VectorValue {
let value = if info == ExtraInfo::PendingF32NaN {
let value = builder.build_bitcast(value, intrinsics.f32x4_ty, "");
canonicalize_nans(builder, intrinsics, value)
} else {
value
};
builder
.build_bitcast(value, intrinsics.f64x2_ty, "")
.into_vector_value()
}
fn apply_pending_canonicalization(
builder: &Builder,
intrinsics: &Intrinsics,
value: BasicValueEnum,
info: ExtraInfo,
) -> BasicValueEnum {
match info {
ExtraInfo::None => value,
ExtraInfo::PendingF32NaN => {
if value.get_type().is_vector_type()
|| value.get_type() == intrinsics.i128_ty.as_basic_type_enum()
{
let ty = value.get_type();
let value = builder.build_bitcast(value, intrinsics.f32x4_ty, "");
let value = canonicalize_nans(builder, intrinsics, value);
builder.build_bitcast(value, ty, "")
} else {
canonicalize_nans(builder, intrinsics, value)
}
}
ExtraInfo::PendingF64NaN => {
if value.get_type().is_vector_type()
|| value.get_type() == intrinsics.i128_ty.as_basic_type_enum()
{
let ty = value.get_type();
let value = builder.build_bitcast(value, intrinsics.f64x2_ty, "");
let value = canonicalize_nans(builder, intrinsics, value);
builder.build_bitcast(value, ty, "")
} else {
canonicalize_nans(builder, intrinsics, value)
}
}
}
}
// Replaces any NaN with the canonical QNaN, otherwise leaves the value alone.
fn canonicalize_nans(
builder: &Builder,
intrinsics: &Intrinsics,
value: BasicValueEnum,
) -> BasicValueEnum {
let f_ty = value.get_type();
let canonicalized = if f_ty.is_vector_type() {
let value = value.into_vector_value();
let f_ty = f_ty.into_vector_type();
let zero = f_ty.const_zero();
let nan_cmp = builder.build_float_compare(FloatPredicate::UNO, value, zero, "nan");
let canonical_qnan = f_ty
.get_element_type()
.into_float_type()
.const_float(std::f64::NAN);
let canonical_qnan = splat_vector(
builder,
intrinsics,
canonical_qnan.as_basic_value_enum(),
f_ty,
"",
);
builder
.build_select(nan_cmp, canonical_qnan, value, "")
.as_basic_value_enum()
} else {
let value = value.into_float_value();
let f_ty = f_ty.into_float_type();
let zero = f_ty.const_zero();
let nan_cmp = builder.build_float_compare(FloatPredicate::UNO, value, zero, "nan");
let canonical_qnan = f_ty.const_float(std::f64::NAN);
builder
.build_select(nan_cmp, canonical_qnan, value, "")
.as_basic_value_enum()
};
canonicalized
}
fn resolve_memory_ptr(
builder: &Builder,
intrinsics: &Intrinsics,
context: &Context,
function: &FunctionValue,
state: &mut State,
ctx: &mut CtxType,
memarg: &MemoryImmediate,
ptr_ty: PointerType,
2019-05-14 10:49:02 +00:00
value_size: usize,
context_field_ptr_to_base_tbaa: MetadataValue,
context_field_ptr_to_bounds_tbaa: MetadataValue,
) -> Result<PointerValue, BinaryReaderError> {
// Look up the memory base (as pointer) and bounds (as unsigned integer).
2019-05-07 11:20:18 +00:00
let memory_cache = ctx.memory(MemoryIndex::new(0), intrinsics);
let (mem_base, mem_bound) = match memory_cache {
MemoryCache::Dynamic {
ptr_to_base_ptr,
ptr_to_bounds,
} => {
let base = builder
.build_load(ptr_to_base_ptr, "base")
.into_pointer_value();
let bounds = builder.build_load(ptr_to_bounds, "bounds").into_int_value();
let tbaa_kind = context.get_kind_id("tbaa");
base.as_instruction_value()
.unwrap()
.set_metadata(context_field_ptr_to_base_tbaa, tbaa_kind);
bounds
.as_instruction_value()
.unwrap()
.set_metadata(context_field_ptr_to_bounds_tbaa, tbaa_kind);
(base, bounds)
}
MemoryCache::Static { base_ptr, bounds } => (base_ptr, bounds),
};
let mem_base = builder
.build_bitcast(mem_base, intrinsics.i8_ptr_ty, &state.var_name())
.into_pointer_value();
// Compute the offset over the memory_base.
let imm_offset = intrinsics.i64_ty.const_int(memarg.offset as u64, false);
let var_offset_i32 = state.pop1()?.into_int_value();
let var_offset =
builder.build_int_z_extend(var_offset_i32, intrinsics.i64_ty, &state.var_name());
let effective_offset = builder.build_int_add(var_offset, imm_offset, &state.var_name());
if let MemoryCache::Dynamic { .. } = memory_cache {
// If the memory is dynamic, do a bounds check. For static we rely on
// the size being a multiple of the page size and hitting a reserved
// but unreadable memory.
let value_size_v = intrinsics.i64_ty.const_int(value_size as u64, false);
let load_offset_end =
builder.build_int_add(effective_offset, value_size_v, &state.var_name());
let ptr_in_bounds = builder.build_int_compare(
IntPredicate::ULE,
load_offset_end,
mem_bound,
&state.var_name(),
);
let ptr_in_bounds = builder
.build_call(
intrinsics.expect_i1,
&[
ptr_in_bounds.as_basic_value_enum(),
intrinsics.i1_ty.const_int(1, false).as_basic_value_enum(),
],
"ptr_in_bounds_expect",
)
.try_as_basic_value()
.left()
.unwrap()
.into_int_value();
let in_bounds_continue_block =
context.append_basic_block(function, "in_bounds_continue_block");
let not_in_bounds_block = context.append_basic_block(function, "not_in_bounds_block");
builder.build_conditional_branch(
ptr_in_bounds,
&in_bounds_continue_block,
&not_in_bounds_block,
);
builder.position_at_end(&not_in_bounds_block);
builder.build_call(
intrinsics.throw_trap,
&[intrinsics.trap_memory_oob],
"throw",
);
builder.build_unreachable();
builder.position_at_end(&in_bounds_continue_block);
}
let ptr = unsafe { builder.build_gep(mem_base, &[effective_offset], &state.var_name()) };
Ok(builder
.build_bitcast(ptr, ptr_ty, &state.var_name())
.into_pointer_value())
}
2019-07-17 18:43:04 +00:00
fn emit_stack_map(
_module_info: &ModuleInfo,
2019-07-17 18:43:04 +00:00
intrinsics: &Intrinsics,
builder: &Builder,
local_function_id: usize,
target: &mut StackmapRegistry,
kind: StackmapEntryKind,
locals: &[PointerValue],
state: &State,
_ctx: &mut CtxType,
opcode_offset: usize,
2019-07-17 18:43:04 +00:00
) {
let stackmap_id = target.entries.len();
let mut params = Vec::with_capacity(2 + locals.len() + state.stack.len());
2019-07-17 18:43:04 +00:00
params.push(
intrinsics
.i64_ty
.const_int(stackmap_id as u64, false)
.as_basic_value_enum(),
);
params.push(intrinsics.i32_ty.const_int(0, false).as_basic_value_enum());
let locals: Vec<_> = locals.iter().map(|x| x.as_basic_value_enum()).collect();
let mut value_semantics: Vec<ValueSemantic> =
Vec::with_capacity(locals.len() + state.stack.len());
2019-07-17 18:43:04 +00:00
params.extend_from_slice(&locals);
value_semantics.extend((0..locals.len()).map(ValueSemantic::WasmLocal));
params.extend(state.stack.iter().map(|x| x.0));
value_semantics.extend((0..state.stack.len()).map(ValueSemantic::WasmStack));
2019-07-17 18:43:04 +00:00
// FIXME: Information needed for Abstract -> Runtime state transform is not fully preserved
// to accelerate compilation and reduce memory usage. Check this again when we try to support
// "full" LLVM OSR.
2019-08-01 15:28:39 +00:00
assert_eq!(params.len(), value_semantics.len() + 2);
2019-07-17 18:43:04 +00:00
builder.build_call(intrinsics.experimental_stackmap, &params, &state.var_name());
target.entries.push(StackmapEntry {
kind,
local_function_id,
local_count: locals.len(),
stack_count: state.stack.len(),
opcode_offset,
value_semantics,
is_start: true,
});
}
fn finalize_opcode_stack_map(
intrinsics: &Intrinsics,
builder: &Builder,
local_function_id: usize,
target: &mut StackmapRegistry,
kind: StackmapEntryKind,
opcode_offset: usize,
) {
let stackmap_id = target.entries.len();
builder.build_call(
intrinsics.experimental_stackmap,
&[
intrinsics
.i64_ty
.const_int(stackmap_id as u64, false)
.as_basic_value_enum(),
intrinsics.i32_ty.const_int(0, false).as_basic_value_enum(),
],
"opcode_stack_map_end",
);
target.entries.push(StackmapEntry {
kind,
local_function_id,
local_count: 0,
stack_count: 0,
opcode_offset,
value_semantics: vec![],
is_start: false,
2019-07-17 18:43:04 +00:00
});
}
fn trap_if_misaligned(
builder: &Builder,
intrinsics: &Intrinsics,
context: &Context,
function: &FunctionValue,
memarg: &MemoryImmediate,
ptr: PointerValue,
) {
let align = match memarg.flags & 3 {
0 => {
return; /* No alignment to check. */
}
1 => 2,
2 => 4,
3 => 8,
_ => unreachable!("this match is fully covered"),
};
let value = builder.build_ptr_to_int(ptr, intrinsics.i64_ty, "");
let and = builder.build_and(
value,
intrinsics.i64_ty.const_int(align - 1, false),
"misaligncheck",
);
2019-08-20 17:39:53 +00:00
let aligned = builder.build_int_compare(IntPredicate::EQ, and, intrinsics.i64_zero, "");
let aligned = builder
.build_call(
intrinsics.expect_i1,
&[
2019-08-20 17:39:53 +00:00
aligned.as_basic_value_enum(),
intrinsics.i1_ty.const_int(1, false).as_basic_value_enum(),
],
"",
)
.try_as_basic_value()
.left()
.unwrap()
.into_int_value();
let continue_block = context.append_basic_block(function, "aligned_access_continue_block");
let not_aligned_block = context.append_basic_block(function, "misaligned_trap_block");
2019-08-20 17:39:53 +00:00
builder.build_conditional_branch(aligned, &continue_block, &not_aligned_block);
builder.position_at_end(&not_aligned_block);
builder.build_call(
intrinsics.throw_trap,
&[intrinsics.trap_misaligned_atomic],
"throw",
);
builder.build_unreachable();
builder.position_at_end(&continue_block);
}
#[derive(Debug)]
pub struct CodegenError {
pub message: String,
}
// This is only called by C++ code, the 'pub' + '#[no_mangle]' combination
// prevents unused function elimination.
#[no_mangle]
pub unsafe extern "C" fn callback_trampoline(
b: *mut Option<Box<dyn std::any::Any>>,
callback: *mut BreakpointHandler,
) {
let callback = Box::from_raw(callback);
let result: Result<(), Box<dyn std::any::Any>> = callback(BreakpointInfo { fault: None });
match result {
Ok(()) => *b = None,
Err(e) => *b = Some(e),
}
}
pub struct LLVMModuleCodeGenerator {
2019-05-07 11:20:18 +00:00
context: Option<Context>,
builder: Option<Builder>,
intrinsics: Option<Intrinsics>,
functions: Vec<LLVMFunctionCodeGenerator>,
signatures: Map<SigIndex, FunctionType>,
signatures_raw: Map<SigIndex, FuncSig>,
function_signatures: Option<Arc<Map<FuncIndex, SigIndex>>>,
func_import_count: usize,
personality_func: FunctionValue,
module: Module,
2019-07-17 18:43:04 +00:00
stackmaps: Rc<RefCell<StackmapRegistry>>,
track_state: bool,
target_machine: TargetMachine,
memory_tbaa: MetadataValue,
locals_tbaa: MetadataValue,
globals_tbaa: MetadataValue,
context_field_ptr_to_base_tbaa: MetadataValue,
context_field_ptr_to_bounds_tbaa: MetadataValue,
}
pub struct LLVMFunctionCodeGenerator {
2019-05-07 11:20:18 +00:00
context: Option<Context>,
builder: Option<Builder>,
alloca_builder: Option<Builder>,
2019-05-07 11:20:18 +00:00
intrinsics: Option<Intrinsics>,
state: State,
function: FunctionValue,
func_sig: FuncSig,
signatures: Map<SigIndex, FunctionType>,
2019-05-01 01:11:44 +00:00
locals: Vec<PointerValue>, // Contains params and locals
num_params: usize,
2019-05-03 05:14:25 +00:00
ctx: Option<CtxType<'static>>,
2019-05-05 18:56:02 +00:00
unreachable_depth: usize,
2019-07-17 18:43:04 +00:00
stackmaps: Rc<RefCell<StackmapRegistry>>,
index: usize,
opcode_offset: usize,
track_state: bool,
memory_tbaa: MetadataValue,
locals_tbaa: MetadataValue,
globals_tbaa: MetadataValue,
context_field_ptr_to_base_tbaa: MetadataValue,
context_field_ptr_to_bounds_tbaa: MetadataValue,
}
impl FunctionCodeGenerator<CodegenError> for LLVMFunctionCodeGenerator {
fn feed_return(&mut self, _ty: WpType) -> Result<(), CodegenError> {
2019-05-01 01:11:44 +00:00
Ok(())
}
fn feed_param(&mut self, _ty: WpType) -> Result<(), CodegenError> {
2019-05-01 01:11:44 +00:00
Ok(())
}
fn feed_local(&mut self, ty: WpType, count: usize) -> Result<(), CodegenError> {
2019-05-01 01:11:44 +00:00
let param_len = self.num_params;
let wasmer_ty = type_to_type(ty)?;
2019-05-07 11:20:18 +00:00
let intrinsics = self.intrinsics.as_ref().unwrap();
let ty = type_to_llvm(intrinsics, wasmer_ty);
2019-05-01 01:11:44 +00:00
let default_value = match wasmer_ty {
2019-05-07 11:20:18 +00:00
Type::I32 => intrinsics.i32_zero.as_basic_value_enum(),
Type::I64 => intrinsics.i64_zero.as_basic_value_enum(),
Type::F32 => intrinsics.f32_zero.as_basic_value_enum(),
Type::F64 => intrinsics.f64_zero.as_basic_value_enum(),
Type::V128 => intrinsics.i128_zero.as_basic_value_enum(),
2019-05-01 01:11:44 +00:00
};
2019-05-07 11:20:18 +00:00
let builder = self.builder.as_ref().unwrap();
let alloca_builder = self.alloca_builder.as_ref().unwrap();
2019-05-07 11:20:18 +00:00
for local_idx in 0..count {
let alloca =
alloca_builder.build_alloca(ty, &format!("local{}", param_len + local_idx));
2019-05-07 11:20:18 +00:00
builder.build_store(alloca, default_value);
if local_idx == 0 {
alloca_builder.position_before(
&alloca
.as_instruction()
.unwrap()
.get_next_instruction()
.unwrap(),
);
}
2019-05-01 01:11:44 +00:00
self.locals.push(alloca);
}
Ok(())
}
2019-05-03 05:14:25 +00:00
fn begin_body(&mut self, module_info: &ModuleInfo) -> Result<(), CodegenError> {
let start_of_code_block = self
.context
2019-05-07 11:20:18 +00:00
.as_ref()
.unwrap()
2019-05-03 05:14:25 +00:00
.append_basic_block(&self.function, "start_of_code");
let entry_end_inst = self
.builder
2019-05-07 11:20:18 +00:00
.as_ref()
.unwrap()
2019-05-03 05:14:25 +00:00
.build_unconditional_branch(&start_of_code_block);
2019-05-07 11:20:18 +00:00
self.builder
.as_ref()
.unwrap()
.position_at_end(&start_of_code_block);
2019-05-03 05:14:25 +00:00
2019-05-07 11:20:18 +00:00
let cache_builder = self.context.as_ref().unwrap().create_builder();
2019-05-03 05:14:25 +00:00
cache_builder.position_before(&entry_end_inst);
let module_info =
unsafe { ::std::mem::transmute::<&ModuleInfo, &'static ModuleInfo>(module_info) };
let function = unsafe {
::std::mem::transmute::<&FunctionValue, &'static FunctionValue>(&self.function)
};
2019-05-07 11:20:18 +00:00
let ctx = CtxType::new(module_info, function, cache_builder);
2019-05-03 05:14:25 +00:00
self.ctx = Some(ctx);
{
let state = &mut self.state;
let builder = self.builder.as_ref().unwrap();
let intrinsics = self.intrinsics.as_ref().unwrap();
if self.track_state {
let mut stackmaps = self.stackmaps.borrow_mut();
emit_stack_map(
&module_info,
&intrinsics,
&builder,
self.index,
&mut *stackmaps,
StackmapEntryKind::FunctionHeader,
&self.locals,
&state,
self.ctx.as_mut().unwrap(),
::std::usize::MAX,
);
finalize_opcode_stack_map(
&intrinsics,
&builder,
self.index,
&mut *stackmaps,
StackmapEntryKind::FunctionHeader,
::std::usize::MAX,
);
}
}
Ok(())
}
fn feed_event(&mut self, event: Event, module_info: &ModuleInfo) -> Result<(), CodegenError> {
let mut state = &mut self.state;
2019-05-07 11:20:18 +00:00
let builder = self.builder.as_ref().unwrap();
let context = self.context.as_ref().unwrap();
let function = self.function;
2019-05-07 11:20:18 +00:00
let intrinsics = self.intrinsics.as_ref().unwrap();
let locals = &self.locals;
let info = module_info;
let signatures = &self.signatures;
2019-05-03 05:14:25 +00:00
let mut ctx = self.ctx.as_mut().unwrap();
let mut opcode_offset: Option<usize> = None;
2019-06-03 00:36:26 +00:00
let op = match event {
Event::Wasm(x) => {
opcode_offset = Some(self.opcode_offset);
self.opcode_offset += 1;
x
}
2019-07-31 20:10:51 +00:00
Event::Internal(x) => {
match x {
InternalEvent::FunctionBegin(_) | InternalEvent::FunctionEnd => {
return Ok(());
}
InternalEvent::Breakpoint(callback) => {
let raw = Box::into_raw(Box::new(callback)) as u64;
let callback = intrinsics.i64_ty.const_int(raw, false);
builder.build_call(
intrinsics.throw_breakpoint,
&[callback.as_basic_value_enum()],
"",
);
2019-07-31 20:10:51 +00:00
return Ok(());
}
InternalEvent::GetInternal(idx) => {
if state.reachable {
let idx = idx as usize;
let field_ptr = ctx.internal_field(idx, intrinsics, builder);
let result = builder.build_load(field_ptr, "get_internal");
state.push1(result);
}
}
InternalEvent::SetInternal(idx) => {
if state.reachable {
let idx = idx as usize;
let field_ptr = ctx.internal_field(idx, intrinsics, builder);
let v = state.pop1()?;
builder.build_store(field_ptr, v);
}
}
}
2019-05-03 05:14:25 +00:00
return Ok(());
}
2019-06-03 00:36:26 +00:00
Event::WasmOwned(ref x) => x,
};
if !state.reachable {
match *op {
Operator::Block { ty: _ } | Operator::Loop { ty: _ } | Operator::If { ty: _ } => {
2019-05-05 18:56:02 +00:00
self.unreachable_depth += 1;
return Ok(());
}
Operator::Else => {
2019-05-05 18:56:02 +00:00
if self.unreachable_depth != 0 {
return Ok(());
}
}
Operator::End => {
2019-05-05 18:56:02 +00:00
if self.unreachable_depth != 0 {
self.unreachable_depth -= 1;
return Ok(());
}
}
_ => {
return Ok(());
}
}
}
match *op {
/***************************
* Control Flow instructions.
* https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.md#control-flow-instructions
***************************/
Operator::Block { ty } => {
let current_block = builder.get_insert_block().ok_or(BinaryReaderError {
message: "not currently in a block",
offset: -1isize as usize,
})?;
let end_block = context.append_basic_block(&function, "end");
builder.position_at_end(&end_block);
2019-07-01 23:11:38 +00:00
let phis = if let Ok(wasmer_ty) = blocktype_to_type(ty) {
let llvm_ty = type_to_llvm(intrinsics, wasmer_ty);
[llvm_ty]
.iter()
.map(|&ty| builder.build_phi(ty, &state.var_name()))
.collect()
} else {
SmallVec::new()
};
state.push_block(end_block, phis);
builder.position_at_end(&current_block);
}
Operator::Loop { ty } => {
let loop_body = context.append_basic_block(&function, "loop_body");
let loop_next = context.append_basic_block(&function, "loop_outer");
builder.build_unconditional_branch(&loop_body);
builder.position_at_end(&loop_next);
2019-07-01 23:11:38 +00:00
let phis = if let Ok(wasmer_ty) = blocktype_to_type(ty) {
let llvm_ty = type_to_llvm(intrinsics, wasmer_ty);
[llvm_ty]
.iter()
.map(|&ty| builder.build_phi(ty, &state.var_name()))
.collect()
} else {
SmallVec::new()
};
builder.position_at_end(&loop_body);
2019-07-17 18:43:04 +00:00
if self.track_state {
if let Some(offset) = opcode_offset {
let mut stackmaps = self.stackmaps.borrow_mut();
emit_stack_map(
&info,
intrinsics,
builder,
self.index,
&mut *stackmaps,
StackmapEntryKind::Loop,
&self.locals,
state,
ctx,
offset,
);
let signal_mem = ctx.signal_mem();
let iv = builder
.build_store(signal_mem, context.i8_type().const_int(0 as u64, false));
// Any 'store' can be made volatile.
iv.set_volatile(true).unwrap();
finalize_opcode_stack_map(
intrinsics,
builder,
self.index,
&mut *stackmaps,
StackmapEntryKind::Loop,
offset,
);
}
2019-07-17 18:43:04 +00:00
}
state.push_loop(loop_body, loop_next, phis);
}
Operator::Br { relative_depth } => {
let frame = state.frame_at_depth(relative_depth)?;
let current_block = builder.get_insert_block().ok_or(BinaryReaderError {
message: "not currently in a block",
offset: -1isize as usize,
})?;
let value_len = if frame.is_loop() {
0
} else {
frame.phis().len()
};
let values = state.peekn_extra(value_len)?;
let values = values.iter().map(|(v, info)| {
apply_pending_canonicalization(builder, intrinsics, *v, *info)
});
// For each result of the block we're branching to,
// pop a value off the value stack and load it into
// the corresponding phi.
for (phi, value) in frame.phis().iter().zip(values) {
phi.add_incoming(&[(&value, &current_block)]);
}
builder.build_unconditional_branch(frame.br_dest());
state.popn(value_len)?;
state.reachable = false;
}
Operator::BrIf { relative_depth } => {
let cond = state.pop1()?;
let frame = state.frame_at_depth(relative_depth)?;
let current_block = builder.get_insert_block().ok_or(BinaryReaderError {
message: "not currently in a block",
offset: -1isize as usize,
})?;
let value_len = if frame.is_loop() {
0
} else {
frame.phis().len()
};
let param_stack = state.peekn_extra(value_len)?;
let param_stack = param_stack.iter().map(|(v, info)| {
apply_pending_canonicalization(builder, intrinsics, *v, *info)
});
for (phi, value) in frame.phis().iter().zip(param_stack) {
phi.add_incoming(&[(&value, &current_block)]);
}
let else_block = context.append_basic_block(&function, "else");
let cond_value = builder.build_int_compare(
IntPredicate::NE,
cond.into_int_value(),
intrinsics.i32_zero,
&state.var_name(),
);
builder.build_conditional_branch(cond_value, frame.br_dest(), &else_block);
builder.position_at_end(&else_block);
}
Operator::BrTable { ref table } => {
let current_block = builder.get_insert_block().ok_or(BinaryReaderError {
message: "not currently in a block",
offset: -1isize as usize,
})?;
let (label_depths, default_depth) = table.read_table()?;
let index = state.pop1()?;
let default_frame = state.frame_at_depth(default_depth)?;
let args = if default_frame.is_loop() {
Vec::new()
} else {
let res_len = default_frame.phis().len();
state.peekn(res_len)?
};
for (phi, value) in default_frame.phis().iter().zip(args.iter()) {
phi.add_incoming(&[(value, &current_block)]);
}
let cases: Vec<_> = label_depths
.iter()
.enumerate()
.map(|(case_index, &depth)| {
2019-05-01 01:11:44 +00:00
let frame_result: Result<&ControlFrame, BinaryReaderError> =
state.frame_at_depth(depth);
let frame = match frame_result {
Ok(v) => v,
Err(e) => return Err(e),
};
let case_index_literal =
context.i32_type().const_int(case_index as u64, false);
for (phi, value) in frame.phis().iter().zip(args.iter()) {
phi.add_incoming(&[(value, &current_block)]);
}
Ok((case_index_literal, frame.br_dest()))
})
.collect::<Result<_, _>>()?;
builder.build_switch(index.into_int_value(), default_frame.br_dest(), &cases[..]);
2019-05-07 04:41:31 +00:00
let args_len = args.len();
state.popn(args_len)?;
state.reachable = false;
}
Operator::If { ty } => {
let current_block = builder.get_insert_block().ok_or(BinaryReaderError {
message: "not currently in a block",
offset: -1isize as usize,
})?;
let if_then_block = context.append_basic_block(&function, "if_then");
let if_else_block = context.append_basic_block(&function, "if_else");
let end_block = context.append_basic_block(&function, "if_end");
let end_phis = {
builder.position_at_end(&end_block);
2019-07-01 23:11:38 +00:00
let phis = if let Ok(wasmer_ty) = blocktype_to_type(ty) {
let llvm_ty = type_to_llvm(intrinsics, wasmer_ty);
[llvm_ty]
.iter()
.map(|&ty| builder.build_phi(ty, &state.var_name()))
.collect()
} else {
SmallVec::new()
};
builder.position_at_end(&current_block);
phis
};
let cond = state.pop1()?;
let cond_value = builder.build_int_compare(
IntPredicate::NE,
cond.into_int_value(),
intrinsics.i32_zero,
&state.var_name(),
);
builder.build_conditional_branch(cond_value, &if_then_block, &if_else_block);
builder.position_at_end(&if_then_block);
state.push_if(if_then_block, if_else_block, end_block, end_phis);
}
Operator::Else => {
if state.reachable {
let frame = state.frame_at_depth(0)?;
let current_block = builder.get_insert_block().ok_or(BinaryReaderError {
message: "not currently in a block",
offset: -1isize as usize,
})?;
for phi in frame.phis().to_vec().iter().rev() {
let (value, info) = state.pop1_extra()?;
let value =
apply_pending_canonicalization(builder, intrinsics, value, info);
phi.add_incoming(&[(&value, &current_block)])
}
let frame = state.frame_at_depth(0)?;
builder.build_unconditional_branch(frame.code_after());
}
let (if_else_block, if_else_state) = if let ControlFrame::IfElse {
if_else,
if_else_state,
..
} = state.frame_at_depth_mut(0)?
{
(if_else, if_else_state)
} else {
unreachable!()
};
*if_else_state = IfElseState::Else;
builder.position_at_end(if_else_block);
state.reachable = true;
}
Operator::End => {
let frame = state.pop_frame()?;
let current_block = builder.get_insert_block().ok_or(BinaryReaderError {
message: "not currently in a block",
offset: -1isize as usize,
})?;
if state.reachable {
for phi in frame.phis().iter().rev() {
let (value, info) = state.pop1_extra()?;
let value =
apply_pending_canonicalization(builder, intrinsics, value, info);
phi.add_incoming(&[(&value, &current_block)]);
}
builder.build_unconditional_branch(frame.code_after());
}
if let ControlFrame::IfElse {
if_else,
next,
if_else_state,
..
} = &frame
{
if let IfElseState::If = if_else_state {
builder.position_at_end(if_else);
builder.build_unconditional_branch(next);
}
}
builder.position_at_end(frame.code_after());
state.reset_stack(&frame);
state.reachable = true;
// Push each phi value to the value stack.
for phi in frame.phis() {
if phi.count_incoming() != 0 {
state.push1(phi.as_basic_value());
} else {
let basic_ty = phi.as_basic_value().get_type();
let placeholder_value = match basic_ty {
BasicTypeEnum::IntType(int_ty) => {
int_ty.const_int(0, false).as_basic_value_enum()
}
BasicTypeEnum::FloatType(float_ty) => {
float_ty.const_float(0.0).as_basic_value_enum()
}
_ => {
return Err(CodegenError {
message: "Operator::End phi type unimplemented".to_string(),
});
}
};
state.push1(placeholder_value);
phi.as_instruction().erase_from_basic_block();
}
}
}
Operator::Return => {
let frame = state.outermost_frame()?;
let current_block = builder.get_insert_block().ok_or(BinaryReaderError {
message: "not currently in a block",
offset: -1isize as usize,
})?;
builder.build_unconditional_branch(frame.br_dest());
let frame = state.outermost_frame()?;
for phi in frame.phis().to_vec().iter() {
let (arg, info) = state.pop1_extra()?;
let arg = apply_pending_canonicalization(builder, intrinsics, arg, info);
phi.add_incoming(&[(&arg, &current_block)]);
}
state.reachable = false;
}
Operator::Unreachable => {
// Emit an unreachable instruction.
// If llvm cannot prove that this is never reached,
// it will emit a `ud2` instruction on x86_64 arches.
// Comment out this `if` block to allow spectests to pass.
// TODO: fix this
if let Some(offset) = opcode_offset {
if self.track_state {
let mut stackmaps = self.stackmaps.borrow_mut();
emit_stack_map(
&info,
intrinsics,
builder,
self.index,
&mut *stackmaps,
StackmapEntryKind::Trappable,
&self.locals,
state,
ctx,
offset,
);
builder.build_call(intrinsics.trap, &[], "trap");
finalize_opcode_stack_map(
intrinsics,
builder,
self.index,
&mut *stackmaps,
StackmapEntryKind::Trappable,
offset,
);
}
2019-07-17 18:43:04 +00:00
}
builder.build_call(
intrinsics.throw_trap,
&[intrinsics.trap_unreachable],
"throw",
);
builder.build_unreachable();
state.reachable = false;
}
/***************************
* Basic instructions.
* https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.md#basic-instructions
***************************/
Operator::Nop => {
// Do nothing.
}
Operator::Drop => {
state.pop1()?;
}
// Generate const values.
Operator::I32Const { value } => {
let i = intrinsics.i32_ty.const_int(value as u64, false);
state.push1(i);
}
Operator::I64Const { value } => {
let i = intrinsics.i64_ty.const_int(value as u64, false);
state.push1(i);
}
Operator::F32Const { value } => {
let bits = intrinsics.i32_ty.const_int(value.bits() as u64, false);
let f = builder.build_bitcast(bits, intrinsics.f32_ty, "f");
state.push1(f);
}
Operator::F64Const { value } => {
let bits = intrinsics.i64_ty.const_int(value.bits(), false);
let f = builder.build_bitcast(bits, intrinsics.f64_ty, "f");
state.push1(f);
}
Operator::V128Const { value } => {
let mut hi: [u8; 8] = Default::default();
let mut lo: [u8; 8] = Default::default();
hi.copy_from_slice(&value.bytes()[0..8]);
lo.copy_from_slice(&value.bytes()[8..16]);
let packed = [u64::from_le_bytes(hi), u64::from_le_bytes(lo)];
let i = intrinsics.i128_ty.const_int_arbitrary_precision(&packed);
state.push1(i);
}
Operator::I8x16Splat => {
let v = state.pop1()?.into_int_value();
let v = builder.build_int_truncate(v, intrinsics.i8_ty, "");
let res = splat_vector(
builder,
intrinsics,
v.as_basic_value_enum(),
intrinsics.i8x16_ty,
&state.var_name(),
);
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8Splat => {
let v = state.pop1()?.into_int_value();
let v = builder.build_int_truncate(v, intrinsics.i16_ty, "");
let res = splat_vector(
builder,
intrinsics,
v.as_basic_value_enum(),
intrinsics.i16x8_ty,
&state.var_name(),
);
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4Splat => {
let v = state.pop1()?;
let res = splat_vector(
builder,
intrinsics,
v,
intrinsics.i32x4_ty,
&state.var_name(),
);
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I64x2Splat => {
let v = state.pop1()?;
let res = splat_vector(
builder,
intrinsics,
v,
intrinsics.i64x2_ty,
&state.var_name(),
);
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::F32x4Splat => {
let (v, i) = state.pop1_extra()?;
let res = splat_vector(
builder,
intrinsics,
v,
intrinsics.f32x4_ty,
&state.var_name(),
);
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
// The spec is unclear, we interpret splat as preserving NaN
// payload bits.
state.push1_extra(res, i);
}
Operator::F64x2Splat => {
let (v, i) = state.pop1_extra()?;
let res = splat_vector(
builder,
intrinsics,
v,
intrinsics.f64x2_ty,
&state.var_name(),
);
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
// The spec is unclear, we interpret splat as preserving NaN
// payload bits.
state.push1_extra(res, i);
}
// Operate on locals.
Operator::GetLocal { local_index } => {
let pointer_value = locals[local_index as usize];
let v = builder.build_load(pointer_value, &state.var_name());
let tbaa_kind = context.get_kind_id("tbaa");
v.as_instruction_value()
.unwrap()
.set_metadata(self.locals_tbaa, tbaa_kind);
state.push1(v);
}
Operator::SetLocal { local_index } => {
let pointer_value = locals[local_index as usize];
let (v, i) = state.pop1_extra()?;
let v = apply_pending_canonicalization(builder, intrinsics, v, i);
let store = builder.build_store(pointer_value, v);
let tbaa_kind = context.get_kind_id("tbaa");
store.set_metadata(self.locals_tbaa, tbaa_kind);
}
Operator::TeeLocal { local_index } => {
let pointer_value = locals[local_index as usize];
let (v, i) = state.peek1_extra()?;
let v = apply_pending_canonicalization(builder, intrinsics, v, i);
let store = builder.build_store(pointer_value, v);
let tbaa_kind = context.get_kind_id("tbaa");
store.set_metadata(self.locals_tbaa, tbaa_kind);
}
Operator::GetGlobal { global_index } => {
let index = GlobalIndex::new(global_index as usize);
2019-05-07 11:20:18 +00:00
let global_cache = ctx.global_cache(index, intrinsics);
match global_cache {
GlobalCache::Const { value } => {
state.push1(value);
}
GlobalCache::Mut { ptr_to_value } => {
let value = builder.build_load(ptr_to_value, "global_value");
let tbaa_kind = context.get_kind_id("tbaa");
value
.as_instruction_value()
.unwrap()
.set_metadata(self.locals_tbaa, tbaa_kind);
state.push1(value);
}
}
}
Operator::SetGlobal { global_index } => {
let (value, info) = state.pop1_extra()?;
let value = apply_pending_canonicalization(builder, intrinsics, value, info);
let index = GlobalIndex::new(global_index as usize);
2019-05-07 11:20:18 +00:00
let global_cache = ctx.global_cache(index, intrinsics);
match global_cache {
GlobalCache::Mut { ptr_to_value } => {
let store = builder.build_store(ptr_to_value, value);
let tbaa_kind = context.get_kind_id("tbaa");
store.set_metadata(self.globals_tbaa, tbaa_kind);
}
GlobalCache::Const { value: _ } => {
return Err(CodegenError {
message: "global is immutable".to_string(),
});
}
}
}
Operator::Select => {
let (v1, v2, cond) = state.pop3()?;
let cond_value = builder.build_int_compare(
IntPredicate::NE,
cond.into_int_value(),
intrinsics.i32_zero,
&state.var_name(),
);
let res = builder.build_select(cond_value, v1, v2, &state.var_name());
state.push1(res);
}
Operator::Call { function_index } => {
let func_index = FuncIndex::new(function_index as usize);
let sigindex = info.func_assoc[func_index];
let llvm_sig = signatures[sigindex];
let func_sig = &info.signatures[sigindex];
2019-07-17 18:43:04 +00:00
let (params, func_ptr) = match func_index.local_or_import(info) {
LocalOrImport::Local(local_func_index) => {
let params: Vec<_> = std::iter::once(ctx.basic())
.chain(
2019-08-16 02:13:00 +00:00
state
.peekn_extra(func_sig.params().len())?
2019-08-16 02:13:00 +00:00
.iter()
.enumerate()
.map(|(i, (v, info))| match func_sig.params()[i] {
2019-08-16 02:13:00 +00:00
Type::F32 => builder.build_bitcast(
apply_pending_canonicalization(
builder, intrinsics, *v, *info,
),
2019-08-16 02:13:00 +00:00
intrinsics.i32_ty,
&state.var_name(),
),
Type::F64 => builder.build_bitcast(
apply_pending_canonicalization(
builder, intrinsics, *v, *info,
),
2019-08-16 02:13:00 +00:00
intrinsics.i64_ty,
&state.var_name(),
),
Type::V128 => apply_pending_canonicalization(
builder, intrinsics, *v, *info,
),
_ => *v,
2019-08-16 02:13:00 +00:00
}),
)
.collect();
2019-05-07 11:20:18 +00:00
let func_ptr =
ctx.local_func(local_func_index, llvm_sig, intrinsics, builder);
2019-07-17 18:43:04 +00:00
(params, func_ptr)
}
LocalOrImport::Import(import_func_index) => {
2019-05-07 11:20:18 +00:00
let (func_ptr_untyped, ctx_ptr) =
ctx.imported_func(import_func_index, intrinsics);
let params: Vec<_> = std::iter::once(ctx_ptr.as_basic_value_enum())
.chain(
2019-08-16 02:13:00 +00:00
state
.peekn_extra(func_sig.params().len())?
2019-08-16 02:13:00 +00:00
.iter()
.enumerate()
.map(|(i, (v, info))| match func_sig.params()[i] {
2019-08-16 02:13:00 +00:00
Type::F32 => builder.build_bitcast(
apply_pending_canonicalization(
builder, intrinsics, *v, *info,
),
2019-08-16 02:13:00 +00:00
intrinsics.i32_ty,
&state.var_name(),
),
Type::F64 => builder.build_bitcast(
apply_pending_canonicalization(
builder, intrinsics, *v, *info,
),
2019-08-16 02:13:00 +00:00
intrinsics.i64_ty,
&state.var_name(),
),
Type::V128 => apply_pending_canonicalization(
builder, intrinsics, *v, *info,
),
_ => *v,
2019-08-16 02:13:00 +00:00
}),
)
.collect();
let func_ptr_ty = llvm_sig.ptr_type(AddressSpace::Generic);
let func_ptr = builder.build_pointer_cast(
func_ptr_untyped,
func_ptr_ty,
"typed_func_ptr",
);
2019-07-17 18:43:04 +00:00
(params, func_ptr)
}
};
state.popn(func_sig.params().len())?;
if self.track_state {
if let Some(offset) = opcode_offset {
let mut stackmaps = self.stackmaps.borrow_mut();
emit_stack_map(
&info,
intrinsics,
builder,
self.index,
&mut *stackmaps,
StackmapEntryKind::Call,
&self.locals,
state,
ctx,
offset,
)
}
2019-07-17 18:43:04 +00:00
}
let call_site = builder.build_call(func_ptr, &params, &state.var_name());
if self.track_state {
if let Some(offset) = opcode_offset {
let mut stackmaps = self.stackmaps.borrow_mut();
finalize_opcode_stack_map(
intrinsics,
builder,
self.index,
&mut *stackmaps,
StackmapEntryKind::Call,
offset,
)
}
}
if let Some(basic_value) = call_site.try_as_basic_value().left() {
match func_sig.returns().len() {
1 => state.push1(match func_sig.returns()[0] {
2019-08-16 02:13:00 +00:00
Type::F32 => {
builder.build_bitcast(basic_value, intrinsics.f32_ty, "ret_cast")
}
Type::F64 => {
builder.build_bitcast(basic_value, intrinsics.f64_ty, "ret_cast")
}
_ => basic_value,
}),
count @ _ => {
// This is a multi-value return.
let struct_value = basic_value.into_struct_value();
for i in 0..(count as u32) {
let value = builder
.build_extract_value(struct_value, i, &state.var_name())
.unwrap();
state.push1(value);
}
}
}
}
}
Operator::CallIndirect { index, table_index } => {
let sig_index = SigIndex::new(index as usize);
2019-05-07 11:20:18 +00:00
let expected_dynamic_sigindex = ctx.dynamic_sigindex(sig_index, intrinsics);
let (table_base, table_bound) =
ctx.table(TableIndex::new(table_index as usize), intrinsics, builder);
let func_index = state.pop1()?.into_int_value();
// We assume the table has the `anyfunc` element type.
let casted_table_base = builder.build_pointer_cast(
table_base,
intrinsics.anyfunc_ty.ptr_type(AddressSpace::Generic),
"casted_table_base",
);
let anyfunc_struct_ptr = unsafe {
builder.build_in_bounds_gep(
casted_table_base,
&[func_index],
"anyfunc_struct_ptr",
)
};
// Load things from the anyfunc data structure.
let (func_ptr, ctx_ptr, found_dynamic_sigindex) = unsafe {
(
builder
.build_load(
builder.build_struct_gep(anyfunc_struct_ptr, 0, "func_ptr_ptr"),
"func_ptr",
)
.into_pointer_value(),
builder.build_load(
builder.build_struct_gep(anyfunc_struct_ptr, 1, "ctx_ptr_ptr"),
"ctx_ptr",
),
builder
.build_load(
builder.build_struct_gep(anyfunc_struct_ptr, 2, "sigindex_ptr"),
"sigindex",
)
.into_int_value(),
)
};
let truncated_table_bounds = builder.build_int_truncate(
table_bound,
intrinsics.i32_ty,
"truncated_table_bounds",
);
// First, check if the index is outside of the table bounds.
let index_in_bounds = builder.build_int_compare(
IntPredicate::ULT,
func_index,
truncated_table_bounds,
"index_in_bounds",
);
let index_in_bounds = builder
.build_call(
intrinsics.expect_i1,
&[
index_in_bounds.as_basic_value_enum(),
intrinsics.i1_ty.const_int(1, false).as_basic_value_enum(),
],
"index_in_bounds_expect",
)
.try_as_basic_value()
.left()
.unwrap()
.into_int_value();
let in_bounds_continue_block =
context.append_basic_block(&function, "in_bounds_continue_block");
let not_in_bounds_block =
context.append_basic_block(&function, "not_in_bounds_block");
builder.build_conditional_branch(
index_in_bounds,
&in_bounds_continue_block,
&not_in_bounds_block,
);
builder.position_at_end(&not_in_bounds_block);
builder.build_call(
intrinsics.throw_trap,
&[intrinsics.trap_call_indirect_oob],
"throw",
);
builder.build_unreachable();
builder.position_at_end(&in_bounds_continue_block);
// Next, check if the signature id is correct.
let sigindices_equal = builder.build_int_compare(
IntPredicate::EQ,
expected_dynamic_sigindex,
found_dynamic_sigindex,
"sigindices_equal",
);
// Tell llvm that `expected_dynamic_sigindex` should equal `found_dynamic_sigindex`.
let sigindices_equal = builder
.build_call(
intrinsics.expect_i1,
&[
sigindices_equal.as_basic_value_enum(),
intrinsics.i1_ty.const_int(1, false).as_basic_value_enum(),
],
"sigindices_equal_expect",
)
.try_as_basic_value()
.left()
.unwrap()
.into_int_value();
let continue_block = context.append_basic_block(&function, "continue_block");
let sigindices_notequal_block =
context.append_basic_block(&function, "sigindices_notequal_block");
builder.build_conditional_branch(
sigindices_equal,
&continue_block,
&sigindices_notequal_block,
);
builder.position_at_end(&sigindices_notequal_block);
builder.build_call(
intrinsics.throw_trap,
&[intrinsics.trap_call_indirect_sig],
"throw",
);
builder.build_unreachable();
builder.position_at_end(&continue_block);
let wasmer_fn_sig = &info.signatures[sig_index];
let fn_ty = signatures[sig_index];
let pushed_args = state.popn_save_extra(wasmer_fn_sig.params().len())?;
let args: Vec<_> = std::iter::once(ctx_ptr)
.chain(pushed_args.into_iter().enumerate().map(|(i, (v, info))| {
2019-08-16 02:13:00 +00:00
match wasmer_fn_sig.params()[i] {
Type::F32 => builder.build_bitcast(
apply_pending_canonicalization(builder, intrinsics, v, info),
intrinsics.i32_ty,
&state.var_name(),
),
Type::F64 => builder.build_bitcast(
apply_pending_canonicalization(builder, intrinsics, v, info),
intrinsics.i64_ty,
&state.var_name(),
),
Type::V128 => {
apply_pending_canonicalization(builder, intrinsics, v, info)
2019-08-16 02:13:00 +00:00
}
_ => v,
}
}))
.collect();
let typed_func_ptr = builder.build_pointer_cast(
func_ptr,
fn_ty.ptr_type(AddressSpace::Generic),
"typed_func_ptr",
);
if self.track_state {
if let Some(offset) = opcode_offset {
let mut stackmaps = self.stackmaps.borrow_mut();
emit_stack_map(
&info,
intrinsics,
builder,
self.index,
&mut *stackmaps,
StackmapEntryKind::Call,
&self.locals,
state,
ctx,
offset,
)
}
2019-07-17 18:43:04 +00:00
}
let call_site = builder.build_call(typed_func_ptr, &args, "indirect_call");
if self.track_state {
if let Some(offset) = opcode_offset {
let mut stackmaps = self.stackmaps.borrow_mut();
finalize_opcode_stack_map(
intrinsics,
builder,
self.index,
&mut *stackmaps,
StackmapEntryKind::Call,
offset,
)
}
}
match wasmer_fn_sig.returns() {
[] => {}
[_] => {
let value = call_site.try_as_basic_value().left().unwrap();
state.push1(match wasmer_fn_sig.returns()[0] {
2019-08-16 02:13:00 +00:00
Type::F32 => {
builder.build_bitcast(value, intrinsics.f32_ty, "ret_cast")
}
Type::F64 => {
builder.build_bitcast(value, intrinsics.f64_ty, "ret_cast")
}
_ => value,
});
}
_ => {
return Err(CodegenError {
message: "Operator::CallIndirect multi-value returns unimplemented"
.to_string(),
});
}
}
}
/***************************
* Integer Arithmetic instructions.
* https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.md#integer-arithmetic-instructions
***************************/
Operator::I32Add | Operator::I64Add => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let res = builder.build_int_add(v1, v2, &state.var_name());
state.push1(res);
}
Operator::I8x16Add => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1);
let v2 = v128_into_i8x16(builder, intrinsics, v2, i2);
let res = builder.build_int_add(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8Add => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1);
let v2 = v128_into_i16x8(builder, intrinsics, v2, i2);
let res = builder.build_int_add(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4Add => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_i32x4(builder, intrinsics, v2, i2);
let res = builder.build_int_add(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I64x2Add => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i64x2(builder, intrinsics, v1, i1);
let v2 = v128_into_i64x2(builder, intrinsics, v2, i2);
let res = builder.build_int_add(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I8x16AddSaturateS => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1).as_basic_value_enum();
let v2 = v128_into_i8x16(builder, intrinsics, v2, i2).as_basic_value_enum();
let res = builder
.build_call(intrinsics.sadd_sat_i8x16, &[v1, v2], &state.var_name())
.try_as_basic_value()
.left()
.unwrap();
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8AddSaturateS => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1).as_basic_value_enum();
let v2 = v128_into_i16x8(builder, intrinsics, v2, i2).as_basic_value_enum();
let res = builder
.build_call(intrinsics.sadd_sat_i16x8, &[v1, v2], &state.var_name())
.try_as_basic_value()
.left()
.unwrap();
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I8x16AddSaturateU => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1).as_basic_value_enum();
let v2 = v128_into_i8x16(builder, intrinsics, v2, i2).as_basic_value_enum();
let res = builder
.build_call(intrinsics.uadd_sat_i8x16, &[v1, v2], &state.var_name())
.try_as_basic_value()
.left()
.unwrap();
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8AddSaturateU => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1).as_basic_value_enum();
let v2 = v128_into_i16x8(builder, intrinsics, v2, i2).as_basic_value_enum();
let res = builder
.build_call(intrinsics.uadd_sat_i16x8, &[v1, v2], &state.var_name())
.try_as_basic_value()
.left()
.unwrap();
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32Sub | Operator::I64Sub => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let res = builder.build_int_sub(v1, v2, &state.var_name());
state.push1(res);
}
Operator::I8x16Sub => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1);
let v2 = v128_into_i8x16(builder, intrinsics, v2, i2);
let res = builder.build_int_sub(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8Sub => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1);
let v2 = v128_into_i16x8(builder, intrinsics, v2, i2);
let res = builder.build_int_sub(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4Sub => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_i32x4(builder, intrinsics, v2, i2);
let res = builder.build_int_sub(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I64x2Sub => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i64x2(builder, intrinsics, v1, i1);
let v2 = v128_into_i64x2(builder, intrinsics, v2, i2);
let res = builder.build_int_sub(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I8x16SubSaturateS => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1).as_basic_value_enum();
let v2 = v128_into_i8x16(builder, intrinsics, v2, i2).as_basic_value_enum();
let res = builder
.build_call(intrinsics.ssub_sat_i8x16, &[v1, v2], &state.var_name())
.try_as_basic_value()
.left()
.unwrap();
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8SubSaturateS => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1).as_basic_value_enum();
let v2 = v128_into_i16x8(builder, intrinsics, v2, i2).as_basic_value_enum();
let res = builder
.build_call(intrinsics.ssub_sat_i16x8, &[v1, v2], &state.var_name())
.try_as_basic_value()
.left()
.unwrap();
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I8x16SubSaturateU => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1).as_basic_value_enum();
let v2 = v128_into_i8x16(builder, intrinsics, v2, i2).as_basic_value_enum();
let res = builder
.build_call(intrinsics.usub_sat_i8x16, &[v1, v2], &state.var_name())
.try_as_basic_value()
.left()
.unwrap();
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8SubSaturateU => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1).as_basic_value_enum();
let v2 = v128_into_i16x8(builder, intrinsics, v2, i2).as_basic_value_enum();
let res = builder
.build_call(intrinsics.usub_sat_i16x8, &[v1, v2], &state.var_name())
.try_as_basic_value()
.left()
.unwrap();
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32Mul | Operator::I64Mul => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let res = builder.build_int_mul(v1, v2, &state.var_name());
state.push1(res);
}
Operator::I8x16Mul => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1);
let v2 = v128_into_i8x16(builder, intrinsics, v2, i2);
let res = builder.build_int_mul(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8Mul => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1);
let v2 = v128_into_i16x8(builder, intrinsics, v2, i2);
let res = builder.build_int_mul(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4Mul => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_i32x4(builder, intrinsics, v2, i2);
let res = builder.build_int_mul(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32DivS | Operator::I64DivS => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
trap_if_zero_or_overflow(builder, intrinsics, context, &function, v1, v2);
let res = builder.build_int_signed_div(v1, v2, &state.var_name());
state.push1(res);
}
Operator::I32DivU | Operator::I64DivU => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
trap_if_zero(builder, intrinsics, context, &function, v2);
let res = builder.build_int_unsigned_div(v1, v2, &state.var_name());
state.push1(res);
}
Operator::I32RemS | Operator::I64RemS => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let int_type = v1.get_type();
let (min_value, neg_one_value) = if int_type == intrinsics.i32_ty {
let min_value = int_type.const_int(i32::min_value() as u64, false);
let neg_one_value = int_type.const_int(-1i32 as u32 as u64, false);
(min_value, neg_one_value)
} else if int_type == intrinsics.i64_ty {
let min_value = int_type.const_int(i64::min_value() as u64, false);
let neg_one_value = int_type.const_int(-1i64 as u64, false);
(min_value, neg_one_value)
} else {
unreachable!()
};
trap_if_zero(builder, intrinsics, context, &function, v2);
// "Overflow also leads to undefined behavior; this is a rare
// case, but can occur, for example, by taking the remainder of
// a 32-bit division of -2147483648 by -1. (The remainder
// doesnt actually overflow, but this rule lets srem be
// implemented using instructions that return both the result
// of the division and the remainder.)"
// -- https://llvm.org/docs/LangRef.html#srem-instruction
//
// In Wasm, the i32.rem_s i32.const -2147483648 i32.const -1 is
// i32.const 0. We implement this by swapping out the left value
// for 0 in this case.
let will_overflow = builder.build_and(
builder.build_int_compare(IntPredicate::EQ, v1, min_value, "left_is_min"),
builder.build_int_compare(
IntPredicate::EQ,
v2,
neg_one_value,
"right_is_neg_one",
),
"srem_will_overflow",
);
let v1 = builder
.build_select(will_overflow, int_type.const_zero(), v1, "")
.into_int_value();
let res = builder.build_int_signed_rem(v1, v2, &state.var_name());
state.push1(res);
}
Operator::I32RemU | Operator::I64RemU => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
trap_if_zero(builder, intrinsics, context, &function, v2);
let res = builder.build_int_unsigned_rem(v1, v2, &state.var_name());
state.push1(res);
}
Operator::I32And | Operator::I64And | Operator::V128And => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = apply_pending_canonicalization(builder, intrinsics, v1, i1);
let v2 = apply_pending_canonicalization(builder, intrinsics, v2, i2);
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let res = builder.build_and(v1, v2, &state.var_name());
state.push1(res);
}
Operator::I32Or | Operator::I64Or | Operator::V128Or => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = apply_pending_canonicalization(builder, intrinsics, v1, i1);
let v2 = apply_pending_canonicalization(builder, intrinsics, v2, i2);
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let res = builder.build_or(v1, v2, &state.var_name());
state.push1(res);
}
Operator::I32Xor | Operator::I64Xor | Operator::V128Xor => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = apply_pending_canonicalization(builder, intrinsics, v1, i1);
let v2 = apply_pending_canonicalization(builder, intrinsics, v2, i2);
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let res = builder.build_xor(v1, v2, &state.var_name());
state.push1(res);
}
Operator::V128Bitselect => {
let ((v1, i1), (v2, i2), (cond, cond_info)) = state.pop3_extra()?;
let v1 = apply_pending_canonicalization(builder, intrinsics, v1, i1);
let v2 = apply_pending_canonicalization(builder, intrinsics, v2, i2);
let cond = apply_pending_canonicalization(builder, intrinsics, cond, cond_info);
let v1 = builder
.build_bitcast(v1, intrinsics.i1x128_ty, "")
.into_vector_value();
let v2 = builder
.build_bitcast(v2, intrinsics.i1x128_ty, "")
.into_vector_value();
let cond = builder
.build_bitcast(cond, intrinsics.i1x128_ty, "")
.into_vector_value();
let res = builder.build_select(cond, v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32Shl | Operator::I64Shl => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
// TODO: missing 'and' of v2?
let res = builder.build_left_shift(v1, v2, &state.var_name());
state.push1(res);
}
Operator::I8x16Shl => {
let ((v1, i1), (v2, _)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1);
let v2 = v2.into_int_value();
let v2 = builder.build_and(v2, intrinsics.i32_ty.const_int(7, false), "");
let v2 = builder.build_int_truncate(v2, intrinsics.i8_ty, "");
let v2 = splat_vector(
builder,
intrinsics,
v2.as_basic_value_enum(),
intrinsics.i8x16_ty,
"",
);
let res = builder.build_left_shift(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8Shl => {
let ((v1, i1), (v2, _)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1);
let v2 = v2.into_int_value();
let v2 = builder.build_and(v2, intrinsics.i32_ty.const_int(15, false), "");
let v2 = builder.build_int_truncate(v2, intrinsics.i16_ty, "");
let v2 = splat_vector(
builder,
intrinsics,
v2.as_basic_value_enum(),
intrinsics.i16x8_ty,
"",
);
let res = builder.build_left_shift(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4Shl => {
let ((v1, i1), (v2, _)) = state.pop2_extra()?;
let v1 = v128_into_i32x4(builder, intrinsics, v1, i1);
let v2 = v2.into_int_value();
let v2 = builder.build_and(v2, intrinsics.i32_ty.const_int(31, false), "");
let v2 = splat_vector(
builder,
intrinsics,
v2.as_basic_value_enum(),
intrinsics.i32x4_ty,
"",
);
let res = builder.build_left_shift(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I64x2Shl => {
let ((v1, i1), (v2, _)) = state.pop2_extra()?;
let v1 = v128_into_i64x2(builder, intrinsics, v1, i1);
let v2 = v2.into_int_value();
let v2 = builder.build_and(v2, intrinsics.i32_ty.const_int(63, false), "");
let v2 = builder.build_int_z_extend(v2, intrinsics.i64_ty, "");
let v2 = splat_vector(
builder,
intrinsics,
v2.as_basic_value_enum(),
intrinsics.i64x2_ty,
"",
);
let res = builder.build_left_shift(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32ShrS | Operator::I64ShrS => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
// TODO: check wasm spec, is this missing v2 mod LaneBits?
let res = builder.build_right_shift(v1, v2, true, &state.var_name());
state.push1(res);
}
Operator::I8x16ShrS => {
let ((v1, i1), (v2, _)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1);
let v2 = v2.into_int_value();
let v2 = builder.build_and(v2, intrinsics.i32_ty.const_int(7, false), "");
let v2 = builder.build_int_truncate(v2, intrinsics.i8_ty, "");
let v2 = splat_vector(
builder,
intrinsics,
v2.as_basic_value_enum(),
intrinsics.i8x16_ty,
"",
);
let res = builder.build_right_shift(v1, v2, true, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8ShrS => {
let ((v1, i1), (v2, _)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1);
let v2 = v2.into_int_value();
let v2 = builder.build_and(v2, intrinsics.i32_ty.const_int(15, false), "");
let v2 = builder.build_int_truncate(v2, intrinsics.i16_ty, "");
let v2 = splat_vector(
builder,
intrinsics,
v2.as_basic_value_enum(),
intrinsics.i16x8_ty,
"",
);
let res = builder.build_right_shift(v1, v2, true, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4ShrS => {
let ((v1, i1), (v2, _)) = state.pop2_extra()?;
let v1 = v128_into_i32x4(builder, intrinsics, v1, i1);
let v2 = v2.into_int_value();
let v2 = builder.build_and(v2, intrinsics.i32_ty.const_int(31, false), "");
let v2 = splat_vector(
builder,
intrinsics,
v2.as_basic_value_enum(),
intrinsics.i32x4_ty,
"",
);
let res = builder.build_right_shift(v1, v2, true, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I64x2ShrS => {
let ((v1, i1), (v2, _)) = state.pop2_extra()?;
let v1 = v128_into_i64x2(builder, intrinsics, v1, i1);
let v2 = v2.into_int_value();
let v2 = builder.build_and(v2, intrinsics.i32_ty.const_int(63, false), "");
let v2 = builder.build_int_z_extend(v2, intrinsics.i64_ty, "");
let v2 = splat_vector(
builder,
intrinsics,
v2.as_basic_value_enum(),
intrinsics.i64x2_ty,
"",
);
let res = builder.build_right_shift(v1, v2, true, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32ShrU | Operator::I64ShrU => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let res = builder.build_right_shift(v1, v2, false, &state.var_name());
state.push1(res);
}
Operator::I8x16ShrU => {
let ((v1, i1), (v2, _)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1);
let v2 = v2.into_int_value();
let v2 = builder.build_and(v2, intrinsics.i32_ty.const_int(7, false), "");
let v2 = builder.build_int_truncate(v2, intrinsics.i8_ty, "");
let v2 = splat_vector(
builder,
intrinsics,
v2.as_basic_value_enum(),
intrinsics.i8x16_ty,
"",
);
let res = builder.build_right_shift(v1, v2, false, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8ShrU => {
let ((v1, i1), (v2, _)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1);
let v2 = v2.into_int_value();
let v2 = builder.build_and(v2, intrinsics.i32_ty.const_int(15, false), "");
let v2 = builder.build_int_truncate(v2, intrinsics.i16_ty, "");
let v2 = splat_vector(
builder,
intrinsics,
v2.as_basic_value_enum(),
intrinsics.i16x8_ty,
"",
);
let res = builder.build_right_shift(v1, v2, false, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4ShrU => {
let ((v1, i1), (v2, _)) = state.pop2_extra()?;
let v1 = v128_into_i32x4(builder, intrinsics, v1, i1);
let v2 = v2.into_int_value();
let v2 = builder.build_and(v2, intrinsics.i32_ty.const_int(31, false), "");
let v2 = splat_vector(
builder,
intrinsics,
v2.as_basic_value_enum(),
intrinsics.i32x4_ty,
"",
);
let res = builder.build_right_shift(v1, v2, false, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I64x2ShrU => {
let ((v1, i1), (v2, _)) = state.pop2_extra()?;
let v1 = v128_into_i64x2(builder, intrinsics, v1, i1);
let v2 = v2.into_int_value();
let v2 = builder.build_and(v2, intrinsics.i32_ty.const_int(63, false), "");
let v2 = builder.build_int_z_extend(v2, intrinsics.i64_ty, "");
let v2 = splat_vector(
builder,
intrinsics,
v2.as_basic_value_enum(),
intrinsics.i64x2_ty,
"",
);
let res = builder.build_right_shift(v1, v2, false, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32Rotl => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let lhs = builder.build_left_shift(v1, v2, &state.var_name());
let rhs = {
let int_width = intrinsics.i32_ty.const_int(32 as u64, false);
let rhs = builder.build_int_sub(int_width, v2, &state.var_name());
builder.build_right_shift(v1, rhs, false, &state.var_name())
};
let res = builder.build_or(lhs, rhs, &state.var_name());
state.push1(res);
}
Operator::I64Rotl => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let lhs = builder.build_left_shift(v1, v2, &state.var_name());
let rhs = {
let int_width = intrinsics.i64_ty.const_int(64 as u64, false);
let rhs = builder.build_int_sub(int_width, v2, &state.var_name());
builder.build_right_shift(v1, rhs, false, &state.var_name())
};
let res = builder.build_or(lhs, rhs, &state.var_name());
state.push1(res);
}
Operator::I32Rotr => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let lhs = builder.build_right_shift(v1, v2, false, &state.var_name());
let rhs = {
let int_width = intrinsics.i32_ty.const_int(32 as u64, false);
let rhs = builder.build_int_sub(int_width, v2, &state.var_name());
builder.build_left_shift(v1, rhs, &state.var_name())
};
let res = builder.build_or(lhs, rhs, &state.var_name());
state.push1(res);
}
Operator::I64Rotr => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let lhs = builder.build_right_shift(v1, v2, false, &state.var_name());
let rhs = {
let int_width = intrinsics.i64_ty.const_int(64 as u64, false);
let rhs = builder.build_int_sub(int_width, v2, &state.var_name());
builder.build_left_shift(v1, rhs, &state.var_name())
};
let res = builder.build_or(lhs, rhs, &state.var_name());
state.push1(res);
}
Operator::I32Clz => {
let input = state.pop1()?;
let is_zero_undef = intrinsics.i1_zero.as_basic_value_enum();
let res = builder
.build_call(
intrinsics.ctlz_i32,
&[input, is_zero_undef],
&state.var_name(),
)
.try_as_basic_value()
.left()
.unwrap();
state.push1(res);
}
Operator::I64Clz => {
let input = state.pop1()?;
let is_zero_undef = intrinsics.i1_zero.as_basic_value_enum();
let res = builder
.build_call(
intrinsics.ctlz_i64,
&[input, is_zero_undef],
&state.var_name(),
)
.try_as_basic_value()
.left()
.unwrap();
state.push1(res);
}
Operator::I32Ctz => {
let input = state.pop1()?;
let is_zero_undef = intrinsics.i1_zero.as_basic_value_enum();
let res = builder
.build_call(
intrinsics.cttz_i32,
&[input, is_zero_undef],
&state.var_name(),
)
.try_as_basic_value()
.left()
.unwrap();
state.push1(res);
}
Operator::I64Ctz => {
let input = state.pop1()?;
let is_zero_undef = intrinsics.i1_zero.as_basic_value_enum();
let res = builder
.build_call(
intrinsics.cttz_i64,
&[input, is_zero_undef],
&state.var_name(),
)
.try_as_basic_value()
.left()
.unwrap();
state.push1(res);
}
Operator::I32Popcnt => {
let input = state.pop1()?;
let res = builder
.build_call(intrinsics.ctpop_i32, &[input], &state.var_name())
.try_as_basic_value()
.left()
.unwrap();
state.push1(res);
}
Operator::I64Popcnt => {
let input = state.pop1()?;
let res = builder
.build_call(intrinsics.ctpop_i64, &[input], &state.var_name())
.try_as_basic_value()
.left()
.unwrap();
state.push1(res);
}
Operator::I32Eqz => {
let input = state.pop1()?.into_int_value();
let cond = builder.build_int_compare(
IntPredicate::EQ,
input,
intrinsics.i32_zero,
&state.var_name(),
);
let res = builder.build_int_z_extend(cond, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::I64Eqz => {
let input = state.pop1()?.into_int_value();
let cond = builder.build_int_compare(
IntPredicate::EQ,
input,
intrinsics.i64_zero,
&state.var_name(),
);
let res = builder.build_int_z_extend(cond, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
/***************************
* Floating-Point Arithmetic instructions.
* https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.md#floating-point-arithmetic-instructions
***************************/
Operator::F32Add => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_float_value(), v2.into_float_value());
let res = builder.build_float_add(v1, v2, &state.var_name());
state.push1_extra(res, ExtraInfo::PendingF32NaN);
}
Operator::F64Add => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_float_value(), v2.into_float_value());
let res = builder.build_float_add(v1, v2, &state.var_name());
state.push1_extra(res, ExtraInfo::PendingF64NaN);
}
Operator::F32x4Add => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_f32x4(builder, intrinsics, v2, i2);
let res = builder.build_float_add(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1_extra(res, ExtraInfo::PendingF32NaN);
}
Operator::F64x2Add => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f64x2(builder, intrinsics, v1, i1);
let v2 = v128_into_f64x2(builder, intrinsics, v2, i2);
let res = builder.build_float_add(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1_extra(res, ExtraInfo::PendingF64NaN);
}
Operator::F32Sub => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_float_value(), v2.into_float_value());
let res = builder.build_float_sub(v1, v2, &state.var_name());
state.push1_extra(res, ExtraInfo::PendingF32NaN);
}
Operator::F64Sub => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_float_value(), v2.into_float_value());
let res = builder.build_float_sub(v1, v2, &state.var_name());
state.push1_extra(res, ExtraInfo::PendingF64NaN);
}
Operator::F32x4Sub => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_f32x4(builder, intrinsics, v2, i2);
let res = builder.build_float_sub(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1_extra(res, ExtraInfo::PendingF32NaN);
}
Operator::F64x2Sub => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f64x2(builder, intrinsics, v1, i1);
let v2 = v128_into_f64x2(builder, intrinsics, v2, i2);
let res = builder.build_float_sub(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1_extra(res, ExtraInfo::PendingF64NaN);
}
Operator::F32Mul => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_float_value(), v2.into_float_value());
let res = builder.build_float_mul(v1, v2, &state.var_name());
state.push1_extra(res, ExtraInfo::PendingF32NaN);
}
Operator::F64Mul => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_float_value(), v2.into_float_value());
let res = builder.build_float_mul(v1, v2, &state.var_name());
state.push1_extra(res, ExtraInfo::PendingF64NaN);
}
Operator::F32x4Mul => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_f32x4(builder, intrinsics, v2, i2);
let res = builder.build_float_mul(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1_extra(res, ExtraInfo::PendingF32NaN);
}
Operator::F64x2Mul => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f64x2(builder, intrinsics, v1, i1);
let v2 = v128_into_f64x2(builder, intrinsics, v2, i2);
let res = builder.build_float_mul(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1_extra(res, ExtraInfo::PendingF64NaN);
}
Operator::F32Div => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_float_value(), v2.into_float_value());
let res = builder.build_float_div(v1, v2, &state.var_name());
state.push1_extra(res, ExtraInfo::PendingF32NaN);
}
Operator::F64Div => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_float_value(), v2.into_float_value());
let res = builder.build_float_div(v1, v2, &state.var_name());
state.push1_extra(res, ExtraInfo::PendingF64NaN);
}
Operator::F32x4Div => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_f32x4(builder, intrinsics, v2, i2);
let res = builder.build_float_div(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1_extra(res, ExtraInfo::PendingF32NaN);
}
Operator::F64x2Div => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f64x2(builder, intrinsics, v1, i1);
let v2 = v128_into_f64x2(builder, intrinsics, v2, i2);
let res = builder.build_float_div(v1, v2, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1_extra(res, ExtraInfo::PendingF64NaN);
}
Operator::F32Sqrt => {
let input = state.pop1()?;
let res = builder
.build_call(intrinsics.sqrt_f32, &[input], &state.var_name())
.try_as_basic_value()
.left()
.unwrap();
state.push1_extra(res, ExtraInfo::PendingF32NaN);
}
Operator::F64Sqrt => {
let input = state.pop1()?;
let res = builder
.build_call(intrinsics.sqrt_f64, &[input], &state.var_name())
.try_as_basic_value()
.left()
.unwrap();
state.push1_extra(res, ExtraInfo::PendingF64NaN);
}
Operator::F32x4Sqrt => {
let (v, i) = state.pop1_extra()?;
let v = v128_into_f32x4(builder, intrinsics, v, i);
let res = builder
.build_call(
intrinsics.sqrt_f32x4,
&[v.as_basic_value_enum()],
&state.var_name(),
)
.try_as_basic_value()
.left()
.unwrap();
let bits = builder.build_bitcast(res, intrinsics.i128_ty, "bits");
state.push1_extra(bits, ExtraInfo::PendingF32NaN);
}
Operator::F64x2Sqrt => {
let (v, i) = state.pop1_extra()?;
let v = v128_into_f64x2(builder, intrinsics, v, i);
let res = builder
.build_call(
intrinsics.sqrt_f64x2,
&[v.as_basic_value_enum()],
&state.var_name(),
)
.try_as_basic_value()
.left()
.unwrap();
let bits = builder.build_bitcast(res, intrinsics.i128_ty, "bits");
state.push1(bits);
}
Operator::F32Min => {
// This implements the same logic as LLVM's @llvm.minimum
2019-10-18 23:34:45 +00:00
// intrinsic would, but x86 lowering of that intrinsic
// encounters a fatal error in LLVM 8 and LLVM 9.
let (v1, v2) = state.pop2()?;
// To detect min(-0.0, 0.0), we check whether the integer
// representations are equal. There's one other case where that
// can happen: non-canonical NaNs. Here we unconditionally
// canonicalize the NaNs.
let v1 = canonicalize_nans(builder, intrinsics, v1);
let v2 = canonicalize_nans(builder, intrinsics, v2);
let (v1, v2) = (v1.into_float_value(), v2.into_float_value());
let v1_is_nan = builder.build_float_compare(
FloatPredicate::UNO,
v1,
intrinsics.f32_zero,
"nan",
);
let v2_is_not_nan = builder.build_float_compare(
FloatPredicate::ORD,
v2,
intrinsics.f32_zero,
"notnan",
);
let v1_repr = builder
.build_bitcast(v1, intrinsics.i32_ty, "")
.into_int_value();
let v2_repr = builder
.build_bitcast(v2, intrinsics.i32_ty, "")
.into_int_value();
let repr_ne = builder.build_int_compare(IntPredicate::NE, v1_repr, v2_repr, "");
let float_eq = builder.build_float_compare(FloatPredicate::OEQ, v1, v2, "");
let min_cmp = builder.build_float_compare(FloatPredicate::OLT, v1, v2, "");
let negative_zero = intrinsics.f32_ty.const_float(-0.0);
let v2 = builder
.build_select(
builder.build_and(
builder.build_and(float_eq, repr_ne, ""),
v2_is_not_nan,
"",
),
negative_zero,
v2,
"",
)
.into_float_value();
let res =
builder.build_select(builder.build_or(v1_is_nan, min_cmp, ""), v1, v2, "");
// Because inputs were canonicalized, we always produce
// canonical NaN outputs. No pending NaN cleanup.
state.push1(res);
}
Operator::F64Min => {
// This implements the same logic as LLVM's @llvm.minimum
2019-10-18 23:34:45 +00:00
// intrinsic would, but x86 lowering of that intrinsic
// encounters a fatal error in LLVM 8 and LLVM 9.
let (v1, v2) = state.pop2()?;
// To detect min(-0.0, 0.0), we check whether the integer
// representations are equal. There's one other case where that
// can happen: non-canonical NaNs. Here we unconditionally
// canonicalize the NaNs.
let v1 = canonicalize_nans(builder, intrinsics, v1);
let v2 = canonicalize_nans(builder, intrinsics, v2);
let (v1, v2) = (v1.into_float_value(), v2.into_float_value());
let v1_is_nan = builder.build_float_compare(
FloatPredicate::UNO,
v1,
intrinsics.f64_zero,
"nan",
);
let v2_is_not_nan = builder.build_float_compare(
FloatPredicate::ORD,
v2,
intrinsics.f64_zero,
"notnan",
);
let v1_repr = builder
.build_bitcast(v1, intrinsics.i64_ty, "")
.into_int_value();
let v2_repr = builder
.build_bitcast(v2, intrinsics.i64_ty, "")
.into_int_value();
let repr_ne = builder.build_int_compare(IntPredicate::NE, v1_repr, v2_repr, "");
let float_eq = builder.build_float_compare(FloatPredicate::OEQ, v1, v2, "");
let min_cmp = builder.build_float_compare(FloatPredicate::OLT, v1, v2, "");
let negative_zero = intrinsics.f64_ty.const_float(-0.0);
let v2 = builder
.build_select(
builder.build_and(
builder.build_and(float_eq, repr_ne, ""),
v2_is_not_nan,
"",
),
negative_zero,
v2,
"",
)
.into_float_value();
let res =
builder.build_select(builder.build_or(v1_is_nan, min_cmp, ""), v1, v2, "");
// Because inputs were canonicalized, we always produce
// canonical NaN outputs. No pending NaN cleanup.
state.push1(res);
}
Operator::F32x4Min => {
// This implements the same logic as LLVM's @llvm.minimum
2019-10-18 23:34:45 +00:00
// intrinsic would, but x86 lowering of that intrinsic
// encounters a fatal error in LLVM 8 and LLVM 9.
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_f32x4(builder, intrinsics, v2, i2);
// To detect min(-0.0, 0.0), we check whether the integer
// representations are equal. There's one other case where that
// can happen: non-canonical NaNs. Here we unconditionally
// canonicalize the NaNs. Note that this is a different
// canonicalization from that which may be performed in the
// v128_into_f32x4 function. That may canonicalize as F64x2 if
// previous computations may have emitted F64x2 NaNs.
let v1 = canonicalize_nans(builder, intrinsics, v1.as_basic_value_enum());
let v2 = canonicalize_nans(builder, intrinsics, v2.as_basic_value_enum());
let (v1, v2) = (v1.into_vector_value(), v2.into_vector_value());
let v1_is_nan = builder.build_float_compare(
FloatPredicate::UNO,
v1,
intrinsics.f32x4_zero,
"nan",
);
let v2_is_not_nan = builder.build_float_compare(
FloatPredicate::ORD,
v2,
intrinsics.f32x4_zero,
"notnan",
);
let v1_repr = builder
.build_bitcast(v1, intrinsics.i32x4_ty, "")
.into_vector_value();
let v2_repr = builder
.build_bitcast(v2, intrinsics.i32x4_ty, "")
.into_vector_value();
let repr_ne = builder.build_int_compare(IntPredicate::NE, v1_repr, v2_repr, "");
let float_eq = builder.build_float_compare(FloatPredicate::OEQ, v1, v2, "");
let min_cmp = builder.build_float_compare(FloatPredicate::OLT, v1, v2, "");
let negative_zero = splat_vector(
builder,
intrinsics,
intrinsics.f32_ty.const_float(-0.0).as_basic_value_enum(),
intrinsics.f32x4_ty,
"",
);
let v2 = builder
.build_select(
builder.build_and(
builder.build_and(float_eq, repr_ne, ""),
v2_is_not_nan,
"",
),
negative_zero,
v2,
"",
)
.into_vector_value();
let res =
builder.build_select(builder.build_or(v1_is_nan, min_cmp, ""), v1, v2, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
// Because inputs were canonicalized, we always produce
// canonical NaN outputs. No pending NaN cleanup.
state.push1(res);
}
Operator::F64x2Min => {
// This implements the same logic as LLVM's @llvm.minimum
2019-10-18 23:34:45 +00:00
// intrinsic would, but x86 lowering of that intrinsic
// encounters a fatal error in LLVM 8 and LLVM 9.
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f64x2(builder, intrinsics, v1, i1);
let v2 = v128_into_f64x2(builder, intrinsics, v2, i2);
// To detect min(-0.0, 0.0), we check whether the integer
// representations are equal. There's one other case where that
// can happen: non-canonical NaNs. Here we unconditionally
// canonicalize the NaNs. Note that this is a different
// canonicalization from that which may be performed in the
// v128_into_f32x4 function. That may canonicalize as F64x2 if
// previous computations may have emitted F64x2 NaNs.
let v1 = canonicalize_nans(builder, intrinsics, v1.as_basic_value_enum());
let v2 = canonicalize_nans(builder, intrinsics, v2.as_basic_value_enum());
let (v1, v2) = (v1.into_vector_value(), v2.into_vector_value());
let v1_is_nan = builder.build_float_compare(
FloatPredicate::UNO,
v1,
intrinsics.f64x2_zero,
"nan",
);
let v2_is_not_nan = builder.build_float_compare(
FloatPredicate::ORD,
v2,
intrinsics.f64x2_zero,
"notnan",
);
let v1_repr = builder
.build_bitcast(v1, intrinsics.i64x2_ty, "")
.into_vector_value();
let v2_repr = builder
.build_bitcast(v2, intrinsics.i64x2_ty, "")
.into_vector_value();
let repr_ne = builder.build_int_compare(IntPredicate::NE, v1_repr, v2_repr, "");
let float_eq = builder.build_float_compare(FloatPredicate::OEQ, v1, v2, "");
let min_cmp = builder.build_float_compare(FloatPredicate::OLT, v1, v2, "");
let negative_zero = splat_vector(
builder,
intrinsics,
intrinsics.f64_ty.const_float(-0.0).as_basic_value_enum(),
intrinsics.f64x2_ty,
"",
);
let v2 = builder
.build_select(
builder.build_and(
builder.build_and(float_eq, repr_ne, ""),
v2_is_not_nan,
"",
),
negative_zero,
v2,
"",
)
.into_vector_value();
let res =
builder.build_select(builder.build_or(v1_is_nan, min_cmp, ""), v1, v2, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
// Because inputs were canonicalized, we always produce
// canonical NaN outputs. No pending NaN cleanup.
state.push1(res);
}
Operator::F32Max => {
// This implements the same logic as LLVM's @llvm.maximum
2019-10-18 23:34:45 +00:00
// intrinsic would, but x86 lowering of that intrinsic
// encounters a fatal error in LLVM 8 and LLVM 9.
let (v1, v2) = state.pop2()?;
// To detect min(-0.0, 0.0), we check whether the integer
// representations are equal. There's one other case where that
// can happen: non-canonical NaNs. Here we unconditionally
// canonicalize the NaNs.
let v1 = canonicalize_nans(builder, intrinsics, v1);
let v2 = canonicalize_nans(builder, intrinsics, v2);
let (v1, v2) = (v1.into_float_value(), v2.into_float_value());
let v1_is_nan = builder.build_float_compare(
FloatPredicate::UNO,
v1,
intrinsics.f32_zero,
"nan",
);
let v2_is_not_nan = builder.build_float_compare(
FloatPredicate::ORD,
v2,
intrinsics.f32_zero,
"notnan",
);
let v1_repr = builder
.build_bitcast(v1, intrinsics.i32_ty, "")
.into_int_value();
let v2_repr = builder
.build_bitcast(v2, intrinsics.i32_ty, "")
.into_int_value();
let repr_ne = builder.build_int_compare(IntPredicate::NE, v1_repr, v2_repr, "");
let float_eq = builder.build_float_compare(FloatPredicate::OEQ, v1, v2, "");
let min_cmp = builder.build_float_compare(FloatPredicate::OGT, v1, v2, "");
let v2 = builder
.build_select(
builder.build_and(
builder.build_and(float_eq, repr_ne, ""),
v2_is_not_nan,
"",
),
intrinsics.f32_zero,
v2,
"",
)
.into_float_value();
let res =
builder.build_select(builder.build_or(v1_is_nan, min_cmp, ""), v1, v2, "");
// Because inputs were canonicalized, we always produce
// canonical NaN outputs. No pending NaN cleanup.
state.push1(res);
}
Operator::F64Max => {
// This implements the same logic as LLVM's @llvm.maximum
2019-10-18 23:34:45 +00:00
// intrinsic would, but x86 lowering of that intrinsic
// encounters a fatal error in LLVM 8 and LLVM 9.
let (v1, v2) = state.pop2()?;
// To detect min(-0.0, 0.0), we check whether the integer
// representations are equal. There's one other case where that
// can happen: non-canonical NaNs. Here we unconditionally
// canonicalize the NaNs.
let v1 = canonicalize_nans(builder, intrinsics, v1);
let v2 = canonicalize_nans(builder, intrinsics, v2);
let (v1, v2) = (v1.into_float_value(), v2.into_float_value());
let v1_is_nan = builder.build_float_compare(
FloatPredicate::UNO,
v1,
intrinsics.f64_zero,
"nan",
);
let v2_is_not_nan = builder.build_float_compare(
FloatPredicate::ORD,
v2,
intrinsics.f64_zero,
"notnan",
);
let v1_repr = builder
.build_bitcast(v1, intrinsics.i64_ty, "")
.into_int_value();
let v2_repr = builder
.build_bitcast(v2, intrinsics.i64_ty, "")
.into_int_value();
let repr_ne = builder.build_int_compare(IntPredicate::NE, v1_repr, v2_repr, "");
let float_eq = builder.build_float_compare(FloatPredicate::OEQ, v1, v2, "");
let min_cmp = builder.build_float_compare(FloatPredicate::OGT, v1, v2, "");
let v2 = builder
.build_select(
builder.build_and(
builder.build_and(float_eq, repr_ne, ""),
v2_is_not_nan,
"",
),
intrinsics.f64_zero,
v2,
"",
)
.into_float_value();
let res =
builder.build_select(builder.build_or(v1_is_nan, min_cmp, ""), v1, v2, "");
// Because inputs were canonicalized, we always produce
// canonical NaN outputs. No pending NaN cleanup.
state.push1(res);
}
Operator::F32x4Max => {
// This implements the same logic as LLVM's @llvm.maximum
2019-10-18 23:34:45 +00:00
// intrinsic would, but x86 lowering of that intrinsic
// encounters a fatal error in LLVM 8 and LLVM 9.
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_f32x4(builder, intrinsics, v2, i2);
// To detect min(-0.0, 0.0), we check whether the integer
// representations are equal. There's one other case where that
// can happen: non-canonical NaNs. Here we unconditionally
// canonicalize the NaNs. Note that this is a different
// canonicalization from that which may be performed in the
// v128_into_f32x4 function. That may canonicalize as F64x2 if
// previous computations may have emitted F64x2 NaNs.
let v1 = canonicalize_nans(builder, intrinsics, v1.as_basic_value_enum());
let v2 = canonicalize_nans(builder, intrinsics, v2.as_basic_value_enum());
let (v1, v2) = (v1.into_vector_value(), v2.into_vector_value());
let v1_is_nan = builder.build_float_compare(
FloatPredicate::UNO,
v1,
intrinsics.f32x4_zero,
"nan",
);
let v2_is_not_nan = builder.build_float_compare(
FloatPredicate::ORD,
v2,
intrinsics.f32x4_zero,
"notnan",
);
let v1_repr = builder
.build_bitcast(v1, intrinsics.i32x4_ty, "")
.into_vector_value();
let v2_repr = builder
.build_bitcast(v2, intrinsics.i32x4_ty, "")
.into_vector_value();
let repr_ne = builder.build_int_compare(IntPredicate::NE, v1_repr, v2_repr, "");
let float_eq = builder.build_float_compare(FloatPredicate::OEQ, v1, v2, "");
let min_cmp = builder.build_float_compare(FloatPredicate::OGT, v1, v2, "");
let zero = splat_vector(
builder,
intrinsics,
intrinsics.f32_zero.as_basic_value_enum(),
intrinsics.f32x4_ty,
"",
);
let v2 = builder
.build_select(
builder.build_and(
builder.build_and(float_eq, repr_ne, ""),
v2_is_not_nan,
"",
),
zero,
v2,
"",
)
.into_vector_value();
let res =
builder.build_select(builder.build_or(v1_is_nan, min_cmp, ""), v1, v2, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
// Because inputs were canonicalized, we always produce
// canonical NaN outputs. No pending NaN cleanup.
state.push1(res);
}
Operator::F64x2Max => {
// This implements the same logic as LLVM's @llvm.maximum
2019-10-18 23:34:45 +00:00
// intrinsic would, but x86 lowering of that intrinsic
// encounters a fatal error in LLVM 8 and LLVM 9.
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f64x2(builder, intrinsics, v1, i1);
let v2 = v128_into_f64x2(builder, intrinsics, v2, i2);
// To detect min(-0.0, 0.0), we check whether the integer
// representations are equal. There's one other case where that
// can happen: non-canonical NaNs. Here we unconditionally
// canonicalize the NaNs. Note that this is a different
// canonicalization from that which may be performed in the
// v128_into_f32x4 function. That may canonicalize as F64x2 if
// previous computations may have emitted F64x2 NaNs.
let v1 = canonicalize_nans(builder, intrinsics, v1.as_basic_value_enum());
let v2 = canonicalize_nans(builder, intrinsics, v2.as_basic_value_enum());
let (v1, v2) = (v1.into_vector_value(), v2.into_vector_value());
let v1_is_nan = builder.build_float_compare(
FloatPredicate::UNO,
v1,
intrinsics.f64x2_zero,
"nan",
);
let v2_is_not_nan = builder.build_float_compare(
FloatPredicate::ORD,
v2,
intrinsics.f64x2_zero,
"notnan",
);
let v1_repr = builder
.build_bitcast(v1, intrinsics.i64x2_ty, "")
.into_vector_value();
let v2_repr = builder
.build_bitcast(v2, intrinsics.i64x2_ty, "")
.into_vector_value();
let repr_ne = builder.build_int_compare(IntPredicate::NE, v1_repr, v2_repr, "");
let float_eq = builder.build_float_compare(FloatPredicate::OEQ, v1, v2, "");
let min_cmp = builder.build_float_compare(FloatPredicate::OGT, v1, v2, "");
let zero = splat_vector(
builder,
intrinsics,
intrinsics.f64_zero.as_basic_value_enum(),
intrinsics.f64x2_ty,
"",
);
let v2 = builder
.build_select(
builder.build_and(
builder.build_and(float_eq, repr_ne, ""),
v2_is_not_nan,
"",
),
zero,
v2,
"",
)
.into_vector_value();
let res =
builder.build_select(builder.build_or(v1_is_nan, min_cmp, ""), v1, v2, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
// Because inputs were canonicalized, we always produce
// canonical NaN outputs. No pending NaN cleanup.
state.push1(res);
}
Operator::F32Ceil => {
let input = state.pop1()?;
let res = builder
.build_call(intrinsics.ceil_f32, &[input], &state.var_name())
.try_as_basic_value()
.left()
.unwrap();
state.push1_extra(res, ExtraInfo::PendingF32NaN);
}
Operator::F64Ceil => {
let input = state.pop1()?;
let res = builder
.build_call(intrinsics.ceil_f64, &[input], &state.var_name())
.try_as_basic_value()
.left()
.unwrap();
state.push1_extra(res, ExtraInfo::PendingF64NaN);
}
Operator::F32Floor => {
let input = state.pop1()?;
let res = builder
.build_call(intrinsics.floor_f32, &[input], &state.var_name())
.try_as_basic_value()
.left()
.unwrap();
state.push1_extra(res, ExtraInfo::PendingF32NaN);
}
Operator::F64Floor => {
let input = state.pop1()?;
let res = builder
.build_call(intrinsics.floor_f64, &[input], &state.var_name())
.try_as_basic_value()
.left()
.unwrap();
state.push1_extra(res, ExtraInfo::PendingF64NaN);
}
Operator::F32Trunc => {
let (v, i) = state.pop1_extra()?;
let res = builder
.build_call(
intrinsics.trunc_f32,
&[v.as_basic_value_enum()],
&state.var_name(),
)
.try_as_basic_value()
.left()
.unwrap();
state.push1_extra(res, i);
}
Operator::F64Trunc => {
let (v, i) = state.pop1_extra()?;
let res = builder
.build_call(
intrinsics.trunc_f64,
&[v.as_basic_value_enum()],
&state.var_name(),
)
.try_as_basic_value()
.left()
.unwrap();
state.push1_extra(res, i);
}
Operator::F32Nearest => {
let (v, i) = state.pop1_extra()?;
let res = builder
.build_call(
intrinsics.nearbyint_f32,
&[v.as_basic_value_enum()],
&state.var_name(),
)
.try_as_basic_value()
.left()
.unwrap();
state.push1_extra(res, i);
}
Operator::F64Nearest => {
let (v, i) = state.pop1_extra()?;
let res = builder
.build_call(
intrinsics.nearbyint_f64,
&[v.as_basic_value_enum()],
&state.var_name(),
)
.try_as_basic_value()
.left()
.unwrap();
state.push1_extra(res, i);
}
Operator::F32Abs => {
let (v, i) = state.pop1_extra()?;
let v = apply_pending_canonicalization(builder, intrinsics, v, i);
let res = builder
.build_call(
intrinsics.fabs_f32,
&[v.as_basic_value_enum()],
&state.var_name(),
)
.try_as_basic_value()
.left()
.unwrap();
// The exact NaN returned by F32Abs is fully defined. Do not
// adjust.
state.push1(res);
}
Operator::F64Abs => {
let (v, i) = state.pop1_extra()?;
let v = apply_pending_canonicalization(builder, intrinsics, v, i);
let res = builder
.build_call(
intrinsics.fabs_f64,
&[v.as_basic_value_enum()],
&state.var_name(),
)
.try_as_basic_value()
.left()
.unwrap();
// The exact NaN returned by F64Abs is fully defined. Do not
// adjust.
state.push1(res);
}
Operator::F32x4Abs => {
let (v, i) = state.pop1_extra()?;
let v = builder.build_bitcast(v.into_int_value(), intrinsics.f32x4_ty, "");
let v = apply_pending_canonicalization(builder, intrinsics, v, i);
let res = builder
.build_call(
intrinsics.fabs_f32x4,
&[v.as_basic_value_enum()],
&state.var_name(),
)
.try_as_basic_value()
.left()
.unwrap();
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
// The exact NaN returned by F32x4Abs is fully defined. Do not
// adjust.
state.push1(res);
}
Operator::F64x2Abs => {
let (v, i) = state.pop1_extra()?;
let v = builder.build_bitcast(v.into_int_value(), intrinsics.f64x2_ty, "");
let v = apply_pending_canonicalization(builder, intrinsics, v, i);
let res = builder
.build_call(intrinsics.fabs_f64x2, &[v], &state.var_name())
.try_as_basic_value()
.left()
.unwrap();
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
// The exact NaN returned by F32x4Abs is fully defined. Do not
// adjust.
state.push1(res);
}
Operator::F32x4Neg => {
let (v, i) = state.pop1_extra()?;
let v = builder.build_bitcast(v.into_int_value(), intrinsics.f32x4_ty, "");
let v =
apply_pending_canonicalization(builder, intrinsics, v, i).into_vector_value();
let res = builder.build_float_neg(v, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
// The exact NaN returned by F32x4Neg is fully defined. Do not
// adjust.
state.push1(res);
}
Operator::F64x2Neg => {
let (v, i) = state.pop1_extra()?;
let v = builder.build_bitcast(v.into_int_value(), intrinsics.f64x2_ty, "");
let v =
apply_pending_canonicalization(builder, intrinsics, v, i).into_vector_value();
let res = builder.build_float_neg(v, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
// The exact NaN returned by F64x2Neg is fully defined. Do not
// adjust.
state.push1(res);
}
Operator::F32Neg | Operator::F64Neg => {
let (v, i) = state.pop1_extra()?;
let v =
apply_pending_canonicalization(builder, intrinsics, v, i).into_float_value();
let res = builder.build_float_neg(v, &state.var_name());
// The exact NaN returned by F32Neg and F64Neg are fully defined.
// Do not adjust.
state.push1(res);
}
Operator::F32Copysign => {
let ((mag, mag_info), (sgn, sgn_info)) = state.pop2_extra()?;
let mag = apply_pending_canonicalization(builder, intrinsics, mag, mag_info);
let sgn = apply_pending_canonicalization(builder, intrinsics, sgn, sgn_info);
let res = builder
.build_call(intrinsics.copysign_f32, &[mag, sgn], &state.var_name())
.try_as_basic_value()
.left()
.unwrap();
// The exact NaN returned by F32Copysign is fully defined.
// Do not adjust.
state.push1(res);
}
Operator::F64Copysign => {
let ((mag, mag_info), (sgn, sgn_info)) = state.pop2_extra()?;
let mag = apply_pending_canonicalization(builder, intrinsics, mag, mag_info);
let sgn = apply_pending_canonicalization(builder, intrinsics, sgn, sgn_info);
let res = builder
.build_call(intrinsics.copysign_f64, &[mag, sgn], &state.var_name())
.try_as_basic_value()
.left()
.unwrap();
// The exact NaN returned by F32Copysign is fully defined.
// Do not adjust.
state.push1(res);
}
/***************************
* Integer Comparison instructions.
* https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.md#integer-comparison-instructions
***************************/
Operator::I32Eq | Operator::I64Eq => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let cond = builder.build_int_compare(IntPredicate::EQ, v1, v2, &state.var_name());
let res = builder.build_int_z_extend(cond, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::I8x16Eq => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1);
let v2 = v128_into_i8x16(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::EQ, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i8x16_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8Eq => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1);
let v2 = v128_into_i16x8(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::EQ, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i16x8_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4Eq => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_i32x4(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::EQ, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i32x4_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32Ne | Operator::I64Ne => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let cond = builder.build_int_compare(IntPredicate::NE, v1, v2, &state.var_name());
let res = builder.build_int_z_extend(cond, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::I8x16Ne => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1);
let v2 = v128_into_i8x16(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::NE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i8x16_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8Ne => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1);
let v2 = v128_into_i16x8(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::NE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i16x8_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4Ne => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_i32x4(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::NE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i32x4_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32LtS | Operator::I64LtS => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let cond = builder.build_int_compare(IntPredicate::SLT, v1, v2, &state.var_name());
let res = builder.build_int_z_extend(cond, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::I8x16LtS => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1);
let v2 = v128_into_i8x16(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::SLT, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i8x16_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8LtS => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1);
let v2 = v128_into_i16x8(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::SLT, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i16x8_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4LtS => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_i32x4(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::SLT, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i32x4_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32LtU | Operator::I64LtU => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let cond = builder.build_int_compare(IntPredicate::ULT, v1, v2, &state.var_name());
let res = builder.build_int_z_extend(cond, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::I8x16LtU => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1);
let v2 = v128_into_i8x16(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::ULT, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i8x16_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8LtU => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1);
let v2 = v128_into_i16x8(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::ULT, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i16x8_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4LtU => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_i32x4(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::ULT, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i32x4_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32LeS | Operator::I64LeS => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let cond = builder.build_int_compare(IntPredicate::SLE, v1, v2, &state.var_name());
let res = builder.build_int_z_extend(cond, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::I8x16LeS => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1);
let v2 = v128_into_i8x16(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::SLE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i8x16_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8LeS => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1);
let v2 = v128_into_i16x8(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::SLE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i16x8_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4LeS => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_i32x4(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::SLE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i32x4_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32LeU | Operator::I64LeU => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let cond = builder.build_int_compare(IntPredicate::ULE, v1, v2, &state.var_name());
let res = builder.build_int_z_extend(cond, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::I8x16LeU => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1);
let v2 = v128_into_i8x16(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::ULE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i8x16_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8LeU => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1);
let v2 = v128_into_i16x8(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::ULE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i16x8_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4LeU => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_i32x4(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::ULE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i32x4_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32GtS | Operator::I64GtS => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let cond = builder.build_int_compare(IntPredicate::SGT, v1, v2, &state.var_name());
let res = builder.build_int_z_extend(cond, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::I8x16GtS => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1);
let v2 = v128_into_i8x16(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::SGT, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i8x16_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8GtS => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1);
let v2 = v128_into_i16x8(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::SGT, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i16x8_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4GtS => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_i32x4(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::SGT, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i32x4_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32GtU | Operator::I64GtU => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let cond = builder.build_int_compare(IntPredicate::UGT, v1, v2, &state.var_name());
let res = builder.build_int_z_extend(cond, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::I8x16GtU => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1);
let v2 = v128_into_i8x16(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::UGT, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i8x16_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8GtU => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1);
let v2 = v128_into_i16x8(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::UGT, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i16x8_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4GtU => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_i32x4(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::UGT, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i32x4_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32GeS | Operator::I64GeS => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let cond = builder.build_int_compare(IntPredicate::SGE, v1, v2, &state.var_name());
let res = builder.build_int_z_extend(cond, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::I8x16GeS => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1);
let v2 = v128_into_i8x16(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::SGE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i8x16_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8GeS => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1);
let v2 = v128_into_i16x8(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::SGE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i16x8_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4GeS => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_i32x4(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::SGE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i32x4_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32GeU | Operator::I64GeU => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_int_value(), v2.into_int_value());
let cond = builder.build_int_compare(IntPredicate::UGE, v1, v2, &state.var_name());
let res = builder.build_int_z_extend(cond, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::I8x16GeU => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1);
let v2 = v128_into_i8x16(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::UGE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i8x16_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8GeU => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1);
let v2 = v128_into_i16x8(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::UGE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i16x8_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4GeU => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_i32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_i32x4(builder, intrinsics, v2, i2);
let res = builder.build_int_compare(IntPredicate::UGE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i32x4_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
/***************************
* Floating-Point Comparison instructions.
* https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.md#floating-point-comparison-instructions
***************************/
Operator::F32Eq | Operator::F64Eq => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_float_value(), v2.into_float_value());
let cond =
builder.build_float_compare(FloatPredicate::OEQ, v1, v2, &state.var_name());
let res = builder.build_int_z_extend(cond, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::F32x4Eq => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_f32x4(builder, intrinsics, v2, i2);
let res = builder.build_float_compare(FloatPredicate::OEQ, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i32x4_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::F64x2Eq => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f64x2(builder, intrinsics, v1, i1);
let v2 = v128_into_f64x2(builder, intrinsics, v2, i2);
let res = builder.build_float_compare(FloatPredicate::OEQ, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i64x2_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::F32Ne | Operator::F64Ne => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_float_value(), v2.into_float_value());
let cond =
builder.build_float_compare(FloatPredicate::UNE, v1, v2, &state.var_name());
let res = builder.build_int_z_extend(cond, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::F32x4Ne => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_f32x4(builder, intrinsics, v2, i2);
let res = builder.build_float_compare(FloatPredicate::UNE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i32x4_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::F64x2Ne => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f64x2(builder, intrinsics, v1, i1);
let v2 = v128_into_f64x2(builder, intrinsics, v2, i2);
let res = builder.build_float_compare(FloatPredicate::UNE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i64x2_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::F32Lt | Operator::F64Lt => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_float_value(), v2.into_float_value());
let cond =
builder.build_float_compare(FloatPredicate::OLT, v1, v2, &state.var_name());
let res = builder.build_int_z_extend(cond, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::F32x4Lt => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_f32x4(builder, intrinsics, v2, i2);
let res = builder.build_float_compare(FloatPredicate::OLT, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i32x4_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::F64x2Lt => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f64x2(builder, intrinsics, v1, i1);
let v2 = v128_into_f64x2(builder, intrinsics, v2, i2);
let res = builder.build_float_compare(FloatPredicate::OLT, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i64x2_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::F32Le | Operator::F64Le => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_float_value(), v2.into_float_value());
let cond =
builder.build_float_compare(FloatPredicate::OLE, v1, v2, &state.var_name());
let res = builder.build_int_z_extend(cond, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::F32x4Le => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_f32x4(builder, intrinsics, v2, i2);
let res = builder.build_float_compare(FloatPredicate::OLE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i32x4_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::F64x2Le => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f64x2(builder, intrinsics, v1, i1);
let v2 = v128_into_f64x2(builder, intrinsics, v2, i2);
let res = builder.build_float_compare(FloatPredicate::OLE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i64x2_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::F32Gt | Operator::F64Gt => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_float_value(), v2.into_float_value());
let cond =
builder.build_float_compare(FloatPredicate::OGT, v1, v2, &state.var_name());
let res = builder.build_int_z_extend(cond, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::F32x4Gt => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_f32x4(builder, intrinsics, v2, i2);
let res = builder.build_float_compare(FloatPredicate::OGT, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i32x4_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::F64x2Gt => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f64x2(builder, intrinsics, v1, i1);
let v2 = v128_into_f64x2(builder, intrinsics, v2, i2);
let res = builder.build_float_compare(FloatPredicate::OGT, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i64x2_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::F32Ge | Operator::F64Ge => {
let (v1, v2) = state.pop2()?;
let (v1, v2) = (v1.into_float_value(), v2.into_float_value());
let cond =
builder.build_float_compare(FloatPredicate::OGE, v1, v2, &state.var_name());
let res = builder.build_int_z_extend(cond, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::F32x4Ge => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f32x4(builder, intrinsics, v1, i1);
let v2 = v128_into_f32x4(builder, intrinsics, v2, i2);
let res = builder.build_float_compare(FloatPredicate::OGE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i32x4_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::F64x2Ge => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f64x2(builder, intrinsics, v1, i1);
let v2 = v128_into_f64x2(builder, intrinsics, v2, i2);
let res = builder.build_float_compare(FloatPredicate::OGE, v1, v2, "");
let res = builder.build_int_s_extend(res, intrinsics.i64x2_ty, "");
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
/***************************
* Conversion instructions.
* https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.md#conversion-instructions
***************************/
Operator::I32WrapI64 => {
let v1 = state.pop1()?.into_int_value();
let res = builder.build_int_truncate(v1, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::I64ExtendSI32 => {
let v1 = state.pop1()?.into_int_value();
let res = builder.build_int_s_extend(v1, intrinsics.i64_ty, &state.var_name());
state.push1(res);
}
Operator::I64ExtendUI32 => {
let v1 = state.pop1()?.into_int_value();
let res = builder.build_int_z_extend(v1, intrinsics.i64_ty, &state.var_name());
state.push1(res);
}
Operator::I32x4TruncSF32x4Sat => {
let v = state.pop1()?.into_int_value();
let res = trunc_sat(
builder,
intrinsics,
intrinsics.f32x4_ty,
intrinsics.i32x4_ty,
-2147480000i32 as u32 as u64,
2147480000,
std::i32::MIN as u64,
std::i32::MAX as u64,
v,
&state.var_name(),
);
state.push1(res);
}
Operator::I32x4TruncUF32x4Sat => {
let v = state.pop1()?.into_int_value();
let res = trunc_sat(
builder,
intrinsics,
intrinsics.f32x4_ty,
intrinsics.i32x4_ty,
0,
4294960000,
std::u32::MIN as u64,
std::u32::MAX as u64,
v,
&state.var_name(),
);
state.push1(res);
}
Operator::I64x2TruncSF64x2Sat => {
let v = state.pop1()?.into_int_value();
let res = trunc_sat(
builder,
intrinsics,
intrinsics.f64x2_ty,
intrinsics.i64x2_ty,
std::i64::MIN as u64,
std::i64::MAX as u64,
std::i64::MIN as u64,
std::i64::MAX as u64,
v,
&state.var_name(),
);
state.push1(res);
}
Operator::I64x2TruncUF64x2Sat => {
let v = state.pop1()?.into_int_value();
let res = trunc_sat(
builder,
intrinsics,
intrinsics.f64x2_ty,
intrinsics.i64x2_ty,
std::u64::MIN,
std::u64::MAX,
std::u64::MIN,
std::u64::MAX,
v,
&state.var_name(),
);
state.push1(res);
}
Operator::I32TruncSF32 => {
let v1 = state.pop1()?.into_float_value();
trap_if_not_representable_as_int(
builder, intrinsics, context, &function, 0xcf000000, // -2147483600.0
0x4effffff, // 2147483500.0
v1,
);
let res =
builder.build_float_to_signed_int(v1, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::I32TruncSF64 => {
let v1 = state.pop1()?.into_float_value();
trap_if_not_representable_as_int(
builder,
intrinsics,
context,
&function,
0xc1e00000001fffff, // -2147483648.9999995
0x41dfffffffffffff, // 2147483647.9999998
v1,
);
let res =
builder.build_float_to_signed_int(v1, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::I32TruncSSatF32 | Operator::I32TruncSSatF64 => {
let v1 = state.pop1()?.into_float_value();
let res =
builder.build_float_to_signed_int(v1, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::I64TruncSF32 => {
let v1 = state.pop1()?.into_float_value();
trap_if_not_representable_as_int(
builder, intrinsics, context, &function,
0xdf000000, // -9223372000000000000.0
0x5effffff, // 9223371500000000000.0
v1,
);
let res =
builder.build_float_to_signed_int(v1, intrinsics.i64_ty, &state.var_name());
state.push1(res);
}
Operator::I64TruncSF64 => {
let v1 = state.pop1()?.into_float_value();
trap_if_not_representable_as_int(
builder,
intrinsics,
context,
&function,
0xc3e0000000000000, // -9223372036854776000.0
0x43dfffffffffffff, // 9223372036854775000.0
v1,
);
let res =
builder.build_float_to_signed_int(v1, intrinsics.i64_ty, &state.var_name());
state.push1(res);
}
Operator::I64TruncSSatF32 | Operator::I64TruncSSatF64 => {
let v1 = state.pop1()?.into_float_value();
let res =
builder.build_float_to_signed_int(v1, intrinsics.i64_ty, &state.var_name());
state.push1(res);
}
Operator::I32TruncUF32 => {
let v1 = state.pop1()?.into_float_value();
trap_if_not_representable_as_int(
builder, intrinsics, context, &function, 0xbf7fffff, // -0.99999994
0x4f7fffff, // 4294967000.0
v1,
);
let res =
builder.build_float_to_unsigned_int(v1, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::I32TruncUF64 => {
let v1 = state.pop1()?.into_float_value();
trap_if_not_representable_as_int(
builder,
intrinsics,
context,
&function,
0xbfefffffffffffff, // -0.9999999999999999
0x41efffffffffffff, // 4294967295.9999995
v1,
);
let res =
builder.build_float_to_unsigned_int(v1, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::I32TruncUSatF32 | Operator::I32TruncUSatF64 => {
let v1 = state.pop1()?.into_float_value();
let res =
builder.build_float_to_unsigned_int(v1, intrinsics.i32_ty, &state.var_name());
state.push1(res);
}
Operator::I64TruncUF32 => {
let v1 = state.pop1()?.into_float_value();
trap_if_not_representable_as_int(
builder, intrinsics, context, &function, 0xbf7fffff, // -0.99999994
0x5f7fffff, // 18446743000000000000.0
v1,
);
let res =
builder.build_float_to_unsigned_int(v1, intrinsics.i64_ty, &state.var_name());
state.push1(res);
}
Operator::I64TruncUF64 => {
let v1 = state.pop1()?.into_float_value();
trap_if_not_representable_as_int(
builder,
intrinsics,
context,
&function,
0xbfefffffffffffff, // -0.9999999999999999
0x43efffffffffffff, // 18446744073709550000.0
v1,
);
let res =
builder.build_float_to_unsigned_int(v1, intrinsics.i64_ty, &state.var_name());
state.push1(res);
}
Operator::I64TruncUSatF32 | Operator::I64TruncUSatF64 => {
let v1 = state.pop1()?.into_float_value();
let res =
builder.build_float_to_unsigned_int(v1, intrinsics.i64_ty, &state.var_name());
state.push1(res);
}
Operator::F32DemoteF64 => {
let v = state.pop1()?;
let v = v.into_float_value();
let res = builder.build_float_trunc(v, intrinsics.f32_ty, &state.var_name());
state.push1_extra(res, ExtraInfo::PendingF32NaN);
}
Operator::F64PromoteF32 => {
let v = state.pop1()?;
let v = v.into_float_value();
let res = builder.build_float_ext(v, intrinsics.f64_ty, &state.var_name());
state.push1_extra(res, ExtraInfo::PendingF64NaN);
}
Operator::F32ConvertSI32 | Operator::F32ConvertSI64 => {
let v1 = state.pop1()?.into_int_value();
let res =
builder.build_signed_int_to_float(v1, intrinsics.f32_ty, &state.var_name());
state.push1(res);
}
Operator::F64ConvertSI32 | Operator::F64ConvertSI64 => {
let v1 = state.pop1()?.into_int_value();
let res =
builder.build_signed_int_to_float(v1, intrinsics.f64_ty, &state.var_name());
state.push1(res);
}
Operator::F32ConvertUI32 | Operator::F32ConvertUI64 => {
let v1 = state.pop1()?.into_int_value();
let res =
builder.build_unsigned_int_to_float(v1, intrinsics.f32_ty, &state.var_name());
state.push1(res);
}
Operator::F64ConvertUI32 | Operator::F64ConvertUI64 => {
let v1 = state.pop1()?.into_int_value();
let res =
builder.build_unsigned_int_to_float(v1, intrinsics.f64_ty, &state.var_name());
state.push1(res);
}
Operator::F32x4ConvertSI32x4 => {
let v = state.pop1()?;
let v = builder
.build_bitcast(v, intrinsics.i32x4_ty, "")
.into_vector_value();
let res =
builder.build_signed_int_to_float(v, intrinsics.f32x4_ty, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::F32x4ConvertUI32x4 => {
let v = state.pop1()?;
let v = builder
.build_bitcast(v, intrinsics.i32x4_ty, "")
.into_vector_value();
let res =
builder.build_unsigned_int_to_float(v, intrinsics.f32x4_ty, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::F64x2ConvertSI64x2 => {
let v = state.pop1()?;
let v = builder
.build_bitcast(v, intrinsics.i64x2_ty, "")
.into_vector_value();
let res =
builder.build_signed_int_to_float(v, intrinsics.f64x2_ty, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::F64x2ConvertUI64x2 => {
let v = state.pop1()?;
let v = builder
.build_bitcast(v, intrinsics.i64x2_ty, "")
.into_vector_value();
let res =
builder.build_unsigned_int_to_float(v, intrinsics.f64x2_ty, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32ReinterpretF32 => {
let (v, i) = state.pop1_extra()?;
let v = apply_pending_canonicalization(builder, intrinsics, v, i);
let ret = builder.build_bitcast(v, intrinsics.i32_ty, &state.var_name());
state.push1(ret);
}
Operator::I64ReinterpretF64 => {
let (v, i) = state.pop1_extra()?;
let v = apply_pending_canonicalization(builder, intrinsics, v, i);
let ret = builder.build_bitcast(v, intrinsics.i64_ty, &state.var_name());
state.push1(ret);
}
Operator::F32ReinterpretI32 => {
let v = state.pop1()?;
let ret = builder.build_bitcast(v, intrinsics.f32_ty, &state.var_name());
state.push1(ret);
}
Operator::F64ReinterpretI64 => {
let v = state.pop1()?;
let ret = builder.build_bitcast(v, intrinsics.f64_ty, &state.var_name());
state.push1(ret);
}
/***************************
* Sign-extension operators.
* https://github.com/WebAssembly/sign-extension-ops/blob/master/proposals/sign-extension-ops/Overview.md
***************************/
Operator::I32Extend8S => {
let value = state.pop1()?.into_int_value();
let narrow_value =
builder.build_int_truncate(value, intrinsics.i8_ty, &state.var_name());
let extended_value =
builder.build_int_s_extend(narrow_value, intrinsics.i32_ty, &state.var_name());
state.push1(extended_value);
}
Operator::I32Extend16S => {
let value = state.pop1()?.into_int_value();
let narrow_value =
builder.build_int_truncate(value, intrinsics.i16_ty, &state.var_name());
let extended_value =
builder.build_int_s_extend(narrow_value, intrinsics.i32_ty, &state.var_name());
state.push1(extended_value);
}
Operator::I64Extend8S => {
let value = state.pop1()?.into_int_value();
let narrow_value =
builder.build_int_truncate(value, intrinsics.i8_ty, &state.var_name());
let extended_value =
builder.build_int_s_extend(narrow_value, intrinsics.i64_ty, &state.var_name());
state.push1(extended_value);
}
Operator::I64Extend16S => {
let value = state.pop1()?.into_int_value();
let narrow_value =
builder.build_int_truncate(value, intrinsics.i16_ty, &state.var_name());
let extended_value =
builder.build_int_s_extend(narrow_value, intrinsics.i64_ty, &state.var_name());
state.push1(extended_value);
}
Operator::I64Extend32S => {
let value = state.pop1()?.into_int_value();
let narrow_value =
builder.build_int_truncate(value, intrinsics.i32_ty, &state.var_name());
let extended_value =
builder.build_int_s_extend(narrow_value, intrinsics.i64_ty, &state.var_name());
state.push1(extended_value);
}
/***************************
* Load and Store instructions.
* https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.md#load-and-store-instructions
***************************/
Operator::I32Load { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
2019-05-14 10:49:02 +00:00
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let result = builder.build_load(effective_address, &state.var_name());
let tbaa_kind = context.get_kind_id("tbaa");
result
.as_instruction_value()
.unwrap()
.set_metadata(self.memory_tbaa, tbaa_kind);
state.push1(result);
}
Operator::I64Load { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i64_ptr_ty,
2019-05-14 10:49:02 +00:00
8,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let result = builder.build_load(effective_address, &state.var_name());
let tbaa_kind = context.get_kind_id("tbaa");
result
.as_instruction_value()
.unwrap()
.set_metadata(self.memory_tbaa, tbaa_kind);
state.push1(result);
}
Operator::F32Load { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.f32_ptr_ty,
2019-05-14 10:49:02 +00:00
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let result = builder.build_load(effective_address, &state.var_name());
let tbaa_kind = context.get_kind_id("tbaa");
result
.as_instruction_value()
.unwrap()
.set_metadata(self.memory_tbaa, tbaa_kind);
state.push1(result);
}
Operator::F64Load { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.f64_ptr_ty,
2019-05-14 10:49:02 +00:00
8,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let result = builder.build_load(effective_address, &state.var_name());
let tbaa_kind = context.get_kind_id("tbaa");
result
.as_instruction_value()
.unwrap()
.set_metadata(self.memory_tbaa, tbaa_kind);
state.push1(result);
}
Operator::V128Load { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i128_ptr_ty,
16,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let result = builder.build_load(effective_address, &state.var_name());
let tbaa_kind = context.get_kind_id("tbaa");
result
.as_instruction_value()
.unwrap()
.set_metadata(self.memory_tbaa, tbaa_kind);
state.push1(result);
}
Operator::I32Store { ref memarg } => {
let value = state.pop1()?;
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
2019-05-14 10:49:02 +00:00
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let store = builder.build_store(effective_address, value);
let tbaa_kind = context.get_kind_id("tbaa");
store.set_metadata(self.memory_tbaa, tbaa_kind);
}
Operator::I64Store { ref memarg } => {
let value = state.pop1()?;
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i64_ptr_ty,
2019-05-14 10:49:02 +00:00
8,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let store = builder.build_store(effective_address, value);
let tbaa_kind = context.get_kind_id("tbaa");
store.set_metadata(self.memory_tbaa, tbaa_kind);
}
Operator::F32Store { ref memarg } => {
let (v, i) = state.pop1_extra()?;
let v = apply_pending_canonicalization(builder, intrinsics, v, i);
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.f32_ptr_ty,
2019-05-14 10:49:02 +00:00
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let store = builder.build_store(effective_address, v);
let tbaa_kind = context.get_kind_id("tbaa");
store.set_metadata(self.memory_tbaa, tbaa_kind);
}
Operator::F64Store { ref memarg } => {
let (v, i) = state.pop1_extra()?;
let v = apply_pending_canonicalization(builder, intrinsics, v, i);
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.f64_ptr_ty,
2019-05-14 10:49:02 +00:00
8,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let store = builder.build_store(effective_address, v);
let tbaa_kind = context.get_kind_id("tbaa");
store.set_metadata(self.memory_tbaa, tbaa_kind);
}
Operator::V128Store { ref memarg } => {
let (v, i) = state.pop1_extra()?;
let v = apply_pending_canonicalization(builder, intrinsics, v, i);
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i128_ptr_ty,
16,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let store = builder.build_store(effective_address, v);
let tbaa_kind = context.get_kind_id("tbaa");
store.set_metadata(self.memory_tbaa, tbaa_kind);
}
Operator::I32Load8S { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
2019-05-14 10:49:02 +00:00
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let narrow_result = builder
.build_load(effective_address, &state.var_name())
.into_int_value();
let result =
builder.build_int_s_extend(narrow_result, intrinsics.i32_ty, &state.var_name());
let tbaa_kind = context.get_kind_id("tbaa");
result
.as_instruction_value()
.unwrap()
.set_metadata(self.memory_tbaa, tbaa_kind);
state.push1(result);
}
Operator::I32Load16S { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2019-05-14 10:49:02 +00:00
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let narrow_result = builder
.build_load(effective_address, &state.var_name())
.into_int_value();
let result =
builder.build_int_s_extend(narrow_result, intrinsics.i32_ty, &state.var_name());
let tbaa_kind = context.get_kind_id("tbaa");
result
.as_instruction_value()
.unwrap()
.set_metadata(self.memory_tbaa, tbaa_kind);
state.push1(result);
}
Operator::I64Load8S { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
2019-05-14 10:49:02 +00:00
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let narrow_result = builder
.build_load(effective_address, &state.var_name())
.into_int_value();
let result =
builder.build_int_s_extend(narrow_result, intrinsics.i64_ty, &state.var_name());
let tbaa_kind = context.get_kind_id("tbaa");
result
.as_instruction_value()
.unwrap()
.set_metadata(self.memory_tbaa, tbaa_kind);
state.push1(result);
}
Operator::I64Load16S { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2019-05-14 10:49:02 +00:00
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let narrow_result = builder
.build_load(effective_address, &state.var_name())
.into_int_value();
let result =
builder.build_int_s_extend(narrow_result, intrinsics.i64_ty, &state.var_name());
let tbaa_kind = context.get_kind_id("tbaa");
result
.as_instruction_value()
.unwrap()
.set_metadata(self.memory_tbaa, tbaa_kind);
state.push1(result);
}
Operator::I64Load32S { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
2019-05-14 10:49:02 +00:00
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let narrow_result = builder
.build_load(effective_address, &state.var_name())
.into_int_value();
let result =
builder.build_int_s_extend(narrow_result, intrinsics.i64_ty, &state.var_name());
let tbaa_kind = context.get_kind_id("tbaa");
result
.as_instruction_value()
.unwrap()
.set_metadata(self.memory_tbaa, tbaa_kind);
state.push1(result);
}
Operator::I32Load8U { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
2019-05-14 10:49:02 +00:00
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let narrow_result = builder
.build_load(effective_address, &state.var_name())
.into_int_value();
let result =
builder.build_int_z_extend(narrow_result, intrinsics.i32_ty, &state.var_name());
let tbaa_kind = context.get_kind_id("tbaa");
result
.as_instruction_value()
.unwrap()
.set_metadata(self.memory_tbaa, tbaa_kind);
state.push1(result);
}
Operator::I32Load16U { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2019-05-14 10:49:02 +00:00
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let narrow_result = builder
.build_load(effective_address, &state.var_name())
.into_int_value();
let result =
builder.build_int_z_extend(narrow_result, intrinsics.i32_ty, &state.var_name());
let tbaa_kind = context.get_kind_id("tbaa");
result
.as_instruction_value()
.unwrap()
.set_metadata(self.memory_tbaa, tbaa_kind);
state.push1(result);
}
Operator::I64Load8U { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
2019-05-14 10:49:02 +00:00
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let narrow_result = builder
.build_load(effective_address, &state.var_name())
.into_int_value();
let result =
builder.build_int_z_extend(narrow_result, intrinsics.i64_ty, &state.var_name());
let tbaa_kind = context.get_kind_id("tbaa");
result
.as_instruction_value()
.unwrap()
.set_metadata(self.memory_tbaa, tbaa_kind);
state.push1(result);
}
Operator::I64Load16U { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2019-05-14 10:49:02 +00:00
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let narrow_result = builder
.build_load(effective_address, &state.var_name())
.into_int_value();
let result =
builder.build_int_z_extend(narrow_result, intrinsics.i64_ty, &state.var_name());
let tbaa_kind = context.get_kind_id("tbaa");
result
.as_instruction_value()
.unwrap()
.set_metadata(self.memory_tbaa, tbaa_kind);
state.push1(result);
}
Operator::I64Load32U { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
2019-05-14 10:49:02 +00:00
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let narrow_result = builder
.build_load(effective_address, &state.var_name())
.into_int_value();
let result =
builder.build_int_z_extend(narrow_result, intrinsics.i64_ty, &state.var_name());
let tbaa_kind = context.get_kind_id("tbaa");
result
.as_instruction_value()
.unwrap()
.set_metadata(self.memory_tbaa, tbaa_kind);
state.push1(result);
}
Operator::I32Store8 { ref memarg } | Operator::I64Store8 { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
2019-05-14 10:49:02 +00:00
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let narrow_value =
builder.build_int_truncate(value, intrinsics.i8_ty, &state.var_name());
let store = builder.build_store(effective_address, narrow_value);
let tbaa_kind = context.get_kind_id("tbaa");
store.set_metadata(self.memory_tbaa, tbaa_kind);
}
Operator::I32Store16 { ref memarg } | Operator::I64Store16 { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2019-05-14 10:49:02 +00:00
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let narrow_value =
builder.build_int_truncate(value, intrinsics.i16_ty, &state.var_name());
let store = builder.build_store(effective_address, narrow_value);
let tbaa_kind = context.get_kind_id("tbaa");
store.set_metadata(self.memory_tbaa, tbaa_kind);
}
Operator::I64Store32 { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
2019-05-14 10:49:02 +00:00
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let narrow_value =
builder.build_int_truncate(value, intrinsics.i32_ty, &state.var_name());
let store = builder.build_store(effective_address, narrow_value);
let tbaa_kind = context.get_kind_id("tbaa");
store.set_metadata(self.memory_tbaa, tbaa_kind);
}
Operator::I8x16Neg => {
let (v, i) = state.pop1_extra()?;
let v = v128_into_i8x16(builder, intrinsics, v, i);
let res = builder.build_int_sub(v.get_type().const_zero(), v, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8Neg => {
let (v, i) = state.pop1_extra()?;
let v = v128_into_i16x8(builder, intrinsics, v, i);
let res = builder.build_int_sub(v.get_type().const_zero(), v, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4Neg => {
let (v, i) = state.pop1_extra()?;
let v = v128_into_i32x4(builder, intrinsics, v, i);
let res = builder.build_int_sub(v.get_type().const_zero(), v, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I64x2Neg => {
let (v, i) = state.pop1_extra()?;
let v = v128_into_i64x2(builder, intrinsics, v, i);
let res = builder.build_int_sub(v.get_type().const_zero(), v, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::V128Not => {
let (v, i) = state.pop1_extra()?;
let v = apply_pending_canonicalization(builder, intrinsics, v, i).into_int_value();
let res = builder.build_not(v, &state.var_name());
state.push1(res);
}
Operator::I8x16AnyTrue
| Operator::I16x8AnyTrue
| Operator::I32x4AnyTrue
| Operator::I64x2AnyTrue => {
let (v, i) = state.pop1_extra()?;
let v = apply_pending_canonicalization(builder, intrinsics, v, i).into_int_value();
let res = builder.build_int_compare(
IntPredicate::NE,
v,
v.get_type().const_zero(),
&state.var_name(),
);
let res = builder.build_int_z_extend(res, intrinsics.i32_ty, "");
state.push1(res);
}
Operator::I8x16AllTrue
| Operator::I16x8AllTrue
| Operator::I32x4AllTrue
| Operator::I64x2AllTrue => {
let vec_ty = match *op {
Operator::I8x16AllTrue => intrinsics.i8x16_ty,
Operator::I16x8AllTrue => intrinsics.i16x8_ty,
Operator::I32x4AllTrue => intrinsics.i32x4_ty,
Operator::I64x2AllTrue => intrinsics.i64x2_ty,
_ => unreachable!(),
};
let (v, i) = state.pop1_extra()?;
let v = apply_pending_canonicalization(builder, intrinsics, v, i).into_int_value();
let lane_int_ty = context.custom_width_int_type(vec_ty.get_size());
let vec = builder.build_bitcast(v, vec_ty, "vec").into_vector_value();
let mask =
builder.build_int_compare(IntPredicate::NE, vec, vec_ty.const_zero(), "mask");
let cmask = builder
.build_bitcast(mask, lane_int_ty, "cmask")
.into_int_value();
let res = builder.build_int_compare(
IntPredicate::EQ,
cmask,
lane_int_ty.const_int(std::u64::MAX, true),
&state.var_name(),
);
let res = builder.build_int_z_extend(res, intrinsics.i32_ty, "");
state.push1(res);
}
Operator::I8x16ExtractLaneS { lane } => {
let (v, i) = state.pop1_extra()?;
let v = v128_into_i8x16(builder, intrinsics, v, i);
let idx = intrinsics.i32_ty.const_int(lane.into(), false);
let res = builder
.build_extract_element(v, idx, &state.var_name())
.into_int_value();
let res = builder.build_int_s_extend(res, intrinsics.i32_ty, "");
state.push1(res);
}
Operator::I8x16ExtractLaneU { lane } => {
let (v, i) = state.pop1_extra()?;
let v = v128_into_i8x16(builder, intrinsics, v, i);
let idx = intrinsics.i32_ty.const_int(lane.into(), false);
let res = builder
.build_extract_element(v, idx, &state.var_name())
.into_int_value();
let res = builder.build_int_z_extend(res, intrinsics.i32_ty, "");
state.push1(res);
}
Operator::I16x8ExtractLaneS { lane } => {
let (v, i) = state.pop1_extra()?;
let v = v128_into_i16x8(builder, intrinsics, v, i);
let idx = intrinsics.i32_ty.const_int(lane.into(), false);
let res = builder
.build_extract_element(v, idx, &state.var_name())
.into_int_value();
let res = builder.build_int_s_extend(res, intrinsics.i32_ty, "");
state.push1(res);
}
Operator::I16x8ExtractLaneU { lane } => {
let (v, i) = state.pop1_extra()?;
let v = v128_into_i16x8(builder, intrinsics, v, i);
let idx = intrinsics.i32_ty.const_int(lane.into(), false);
let res = builder
.build_extract_element(v, idx, &state.var_name())
.into_int_value();
let res = builder.build_int_z_extend(res, intrinsics.i32_ty, "");
state.push1(res);
}
Operator::I32x4ExtractLane { lane } => {
let (v, i) = state.pop1_extra()?;
let v = v128_into_i32x4(builder, intrinsics, v, i);
let idx = intrinsics.i32_ty.const_int(lane.into(), false);
let res = builder.build_extract_element(v, idx, &state.var_name());
state.push1(res);
}
Operator::I64x2ExtractLane { lane } => {
let (v, i) = state.pop1_extra()?;
let v = v128_into_i64x2(builder, intrinsics, v, i);
let idx = intrinsics.i32_ty.const_int(lane.into(), false);
let res = builder.build_extract_element(v, idx, &state.var_name());
state.push1(res);
}
Operator::F32x4ExtractLane { lane } => {
let (v, i) = state.pop1_extra()?;
let v = v128_into_f32x4(builder, intrinsics, v, i);
let idx = intrinsics.i32_ty.const_int(lane.into(), false);
let res = builder.build_extract_element(v, idx, &state.var_name());
state.push1(res);
}
Operator::F64x2ExtractLane { lane } => {
let (v, i) = state.pop1_extra()?;
let v = v128_into_f64x2(builder, intrinsics, v, i);
let idx = intrinsics.i32_ty.const_int(lane.into(), false);
let res = builder.build_extract_element(v, idx, &state.var_name());
state.push1(res);
}
Operator::I8x16ReplaceLane { lane } => {
let ((v1, i1), (v2, _)) = state.pop2_extra()?;
let v1 = v128_into_i8x16(builder, intrinsics, v1, i1);
let v2 = v2.into_int_value();
let v2 = builder.build_int_cast(v2, intrinsics.i8_ty, "");
let idx = intrinsics.i32_ty.const_int(lane.into(), false);
let res = builder.build_insert_element(v1, v2, idx, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8ReplaceLane { lane } => {
let ((v1, i1), (v2, _)) = state.pop2_extra()?;
let v1 = v128_into_i16x8(builder, intrinsics, v1, i1);
let v2 = v2.into_int_value();
let v2 = builder.build_int_cast(v2, intrinsics.i16_ty, "");
let idx = intrinsics.i32_ty.const_int(lane.into(), false);
let res = builder.build_insert_element(v1, v2, idx, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4ReplaceLane { lane } => {
let ((v1, i1), (v2, _)) = state.pop2_extra()?;
let v1 = v128_into_i32x4(builder, intrinsics, v1, i1);
let v2 = v2.into_int_value();
let idx = intrinsics.i32_ty.const_int(lane.into(), false);
let res = builder.build_insert_element(v1, v2, idx, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I64x2ReplaceLane { lane } => {
let ((v1, i1), (v2, _)) = state.pop2_extra()?;
let v1 = v128_into_i64x2(builder, intrinsics, v1, i1);
let v2 = v2.into_int_value();
let idx = intrinsics.i32_ty.const_int(lane.into(), false);
let res = builder.build_insert_element(v1, v2, idx, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::F32x4ReplaceLane { lane } => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f32x4(builder, intrinsics, v1, i1);
let v2 =
apply_pending_canonicalization(builder, intrinsics, v2, i2).into_float_value();
let idx = intrinsics.i32_ty.const_int(lane.into(), false);
let res = builder.build_insert_element(v1, v2, idx, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::F64x2ReplaceLane { lane } => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = v128_into_f64x2(builder, intrinsics, v1, i1);
let v2 =
apply_pending_canonicalization(builder, intrinsics, v2, i2).into_float_value();
let idx = intrinsics.i32_ty.const_int(lane.into(), false);
let res = builder.build_insert_element(v1, v2, idx, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::V8x16Swizzle => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = apply_pending_canonicalization(builder, intrinsics, v1, i1);
let v1 = builder
.build_bitcast(v1, intrinsics.i8x16_ty, "")
.into_vector_value();
let v2 = apply_pending_canonicalization(builder, intrinsics, v2, i2);
let v2 = builder
.build_bitcast(v2, intrinsics.i8x16_ty, "")
.into_vector_value();
let lanes = intrinsics.i8_ty.const_int(16, false);
let lanes = splat_vector(
builder,
intrinsics,
lanes.as_basic_value_enum(),
intrinsics.i8x16_ty,
"",
);
let mut res = intrinsics.i8x16_ty.get_undef();
let idx_out_of_range =
builder.build_int_compare(IntPredicate::UGE, v2, lanes, "idx_out_of_range");
let idx_clamped = builder
.build_select(
idx_out_of_range,
intrinsics.i8x16_ty.const_zero(),
v2,
"idx_clamped",
)
.into_vector_value();
for i in 0..16 {
let idx = builder
.build_extract_element(
idx_clamped,
intrinsics.i32_ty.const_int(i, false),
"idx",
)
.into_int_value();
let replace_with_zero = builder
.build_extract_element(
idx_out_of_range,
intrinsics.i32_ty.const_int(i, false),
"replace_with_zero",
)
2019-07-18 20:40:24 +00:00
.into_int_value();
let elem = builder
.build_extract_element(v1, idx, "elem")
2019-07-18 20:40:24 +00:00
.into_int_value();
let elem_or_zero = builder.build_select(
replace_with_zero,
intrinsics.i8_zero,
2019-07-18 20:40:24 +00:00
elem,
"elem_or_zero",
);
2019-07-10 21:28:07 +00:00
res = builder.build_insert_element(
res,
elem_or_zero,
2019-07-10 21:28:07 +00:00
intrinsics.i32_ty.const_int(i, false),
"",
);
}
let res = builder.build_bitcast(res, intrinsics.i128_ty, &state.var_name());
state.push1(res);
}
Operator::V8x16Shuffle { lanes } => {
let ((v1, i1), (v2, i2)) = state.pop2_extra()?;
let v1 = apply_pending_canonicalization(builder, intrinsics, v1, i1);
let v1 = builder
.build_bitcast(v1, intrinsics.i8x16_ty, "")
.into_vector_value();
let v2 = apply_pending_canonicalization(builder, intrinsics, v2, i2);
let v2 = builder
.build_bitcast(v2, intrinsics.i8x16_ty, "")
.into_vector_value();
let mask = VectorType::const_vector(
lanes
.iter()
.map(|l| intrinsics.i32_ty.const_int((*l).into(), false))
.collect::<Vec<IntValue>>()
.as_slice(),
);
let res = builder.build_shuffle_vector(v1, v2, mask, &state.var_name());
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I8x16LoadSplat { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let elem = builder.build_load(effective_address, "").into_int_value();
let tbaa_kind = context.get_kind_id("tbaa");
elem.as_instruction_value()
.unwrap()
.set_metadata(self.memory_tbaa, tbaa_kind);
let res = splat_vector(
builder,
intrinsics,
elem.as_basic_value_enum(),
intrinsics.i8x16_ty,
&state.var_name(),
);
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I16x8LoadSplat { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let elem = builder.build_load(effective_address, "").into_int_value();
let tbaa_kind = context.get_kind_id("tbaa");
elem.as_instruction_value()
.unwrap()
.set_metadata(self.memory_tbaa, tbaa_kind);
let res = splat_vector(
builder,
intrinsics,
elem.as_basic_value_enum(),
intrinsics.i16x8_ty,
&state.var_name(),
);
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I32x4LoadSplat { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let elem = builder.build_load(effective_address, "").into_int_value();
let tbaa_kind = context.get_kind_id("tbaa");
elem.as_instruction_value()
.unwrap()
.set_metadata(self.memory_tbaa, tbaa_kind);
let res = splat_vector(
builder,
intrinsics,
elem.as_basic_value_enum(),
intrinsics.i32x4_ty,
&state.var_name(),
);
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::I64x2LoadSplat { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i64_ptr_ty,
8,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
let elem = builder.build_load(effective_address, "").into_int_value();
let tbaa_kind = context.get_kind_id("tbaa");
elem.as_instruction_value()
.unwrap()
.set_metadata(self.memory_tbaa, tbaa_kind);
let res = splat_vector(
builder,
intrinsics,
elem.as_basic_value_enum(),
intrinsics.i64x2_ty,
&state.var_name(),
);
let res = builder.build_bitcast(res, intrinsics.i128_ty, "");
state.push1(res);
}
Operator::Fence { flags: _ } => {
// Fence is a nop.
//
// Fence was added to preserve information about fences from
// source languages. If in the future Wasm extends the memory
// model, and if we hadn't recorded what fences used to be there,
// it would lead to data races that weren't present in the
// original source language.
}
Operator::I32AtomicLoad { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let result = builder.build_load(effective_address, &state.var_name());
let load = result.as_instruction_value().unwrap();
load.set_alignment(4).unwrap();
load.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
let tbaa_kind = context.get_kind_id("tbaa");
load.set_metadata(self.memory_tbaa, tbaa_kind);
state.push1(result);
}
Operator::I64AtomicLoad { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i64_ptr_ty,
8,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let result = builder.build_load(effective_address, &state.var_name());
let load = result.as_instruction_value().unwrap();
load.set_alignment(8).unwrap();
load.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
let tbaa_kind = context.get_kind_id("tbaa");
load.set_metadata(self.memory_tbaa, tbaa_kind);
state.push1(result);
}
Operator::I32AtomicLoad8U { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_result = builder
.build_load(effective_address, &state.var_name())
.into_int_value();
let load = narrow_result.as_instruction_value().unwrap();
load.set_alignment(1).unwrap();
load.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
let tbaa_kind = context.get_kind_id("tbaa");
load.set_metadata(self.memory_tbaa, tbaa_kind);
let result =
builder.build_int_z_extend(narrow_result, intrinsics.i32_ty, &state.var_name());
state.push1(result);
}
Operator::I32AtomicLoad16U { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_result = builder
.build_load(effective_address, &state.var_name())
.into_int_value();
let load = narrow_result.as_instruction_value().unwrap();
load.set_alignment(2).unwrap();
load.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
let tbaa_kind = context.get_kind_id("tbaa");
load.set_metadata(self.memory_tbaa, tbaa_kind);
let result =
builder.build_int_z_extend(narrow_result, intrinsics.i32_ty, &state.var_name());
state.push1(result);
}
Operator::I64AtomicLoad8U { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_result = builder
.build_load(effective_address, &state.var_name())
.into_int_value();
let load = narrow_result.as_instruction_value().unwrap();
load.set_alignment(1).unwrap();
load.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
let tbaa_kind = context.get_kind_id("tbaa");
load.set_metadata(self.memory_tbaa, tbaa_kind);
let result =
builder.build_int_z_extend(narrow_result, intrinsics.i64_ty, &state.var_name());
state.push1(result);
}
Operator::I64AtomicLoad16U { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_result = builder
.build_load(effective_address, &state.var_name())
.into_int_value();
let load = narrow_result.as_instruction_value().unwrap();
load.set_alignment(2).unwrap();
load.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
let tbaa_kind = context.get_kind_id("tbaa");
load.set_metadata(self.memory_tbaa, tbaa_kind);
let result =
builder.build_int_z_extend(narrow_result, intrinsics.i64_ty, &state.var_name());
state.push1(result);
}
Operator::I64AtomicLoad32U { ref memarg } => {
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_result = builder
.build_load(effective_address, &state.var_name())
.into_int_value();
let load = narrow_result.as_instruction_value().unwrap();
load.set_alignment(4).unwrap();
load.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
let tbaa_kind = context.get_kind_id("tbaa");
load.set_metadata(self.memory_tbaa, tbaa_kind);
let result =
builder.build_int_z_extend(narrow_result, intrinsics.i64_ty, &state.var_name());
state.push1(result);
}
Operator::I32AtomicStore { ref memarg } => {
let value = state.pop1()?;
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let store = builder.build_store(effective_address, value);
store.set_alignment(4).unwrap();
store
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
let tbaa_kind = context.get_kind_id("tbaa");
store.set_metadata(self.memory_tbaa, tbaa_kind);
}
Operator::I64AtomicStore { ref memarg } => {
let value = state.pop1()?;
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i64_ptr_ty,
8,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let store = builder.build_store(effective_address, value);
store.set_alignment(8).unwrap();
store
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
let tbaa_kind = context.get_kind_id("tbaa");
store.set_metadata(self.memory_tbaa, tbaa_kind);
}
Operator::I32AtomicStore8 { ref memarg } | Operator::I64AtomicStore8 { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i8_ty, &state.var_name());
let store = builder.build_store(effective_address, narrow_value);
store.set_alignment(1).unwrap();
store
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
let tbaa_kind = context.get_kind_id("tbaa");
store.set_metadata(self.memory_tbaa, tbaa_kind);
}
Operator::I32AtomicStore16 { ref memarg }
| Operator::I64AtomicStore16 { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i16_ty, &state.var_name());
let store = builder.build_store(effective_address, narrow_value);
store.set_alignment(2).unwrap();
store
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
let tbaa_kind = context.get_kind_id("tbaa");
store.set_metadata(self.memory_tbaa, tbaa_kind);
}
Operator::I64AtomicStore32 { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i32_ty, &state.var_name());
let store = builder.build_store(effective_address, narrow_value);
store.set_alignment(4).unwrap();
store
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
let tbaa_kind = context.get_kind_id("tbaa");
store.set_metadata(self.memory_tbaa, tbaa_kind);
}
Operator::I32AtomicRmw8UAdd { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i8_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Add,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i32_ty, &state.var_name());
state.push1(old);
}
Operator::I32AtomicRmw16UAdd { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i16_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Add,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i32_ty, &state.var_name());
state.push1(old);
}
Operator::I32AtomicRmwAdd { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Add,
effective_address,
value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
state.push1(old);
}
Operator::I64AtomicRmw8UAdd { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i8_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Add,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmw16UAdd { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i16_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Add,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmw32UAdd { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i32_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Add,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmwAdd { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i64_ptr_ty,
8,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Add,
effective_address,
value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
state.push1(old);
}
Operator::I32AtomicRmw8USub { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i8_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Sub,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i32_ty, &state.var_name());
state.push1(old);
}
Operator::I32AtomicRmw16USub { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i16_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Sub,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i32_ty, &state.var_name());
state.push1(old);
}
Operator::I32AtomicRmwSub { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Sub,
effective_address,
value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
state.push1(old);
}
Operator::I64AtomicRmw8USub { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i8_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Sub,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmw16USub { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i16_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Sub,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmw32USub { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i32_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Sub,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmwSub { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i64_ptr_ty,
8,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Sub,
effective_address,
value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
state.push1(old);
}
Operator::I32AtomicRmw8UAnd { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i8_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::And,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i32_ty, &state.var_name());
state.push1(old);
}
Operator::I32AtomicRmw16UAnd { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i16_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::And,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i32_ty, &state.var_name());
state.push1(old);
}
Operator::I32AtomicRmwAnd { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::And,
effective_address,
value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
state.push1(old);
}
Operator::I64AtomicRmw8UAnd { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i8_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::And,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmw16UAnd { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i16_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::And,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmw32UAnd { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i32_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::And,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmwAnd { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i64_ptr_ty,
8,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::And,
effective_address,
value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
state.push1(old);
}
Operator::I32AtomicRmw8UOr { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i8_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Or,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i32_ty, &state.var_name());
state.push1(old);
}
Operator::I32AtomicRmw16UOr { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i16_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Or,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i32_ty, &state.var_name());
state.push1(old);
}
Operator::I32AtomicRmwOr { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Or,
effective_address,
value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i32_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmw8UOr { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i8_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Or,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmw16UOr { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i16_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Or,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmw32UOr { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i32_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Or,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmwOr { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i64_ptr_ty,
8,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Or,
effective_address,
value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
state.push1(old);
}
Operator::I32AtomicRmw8UXor { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i8_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Xor,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i32_ty, &state.var_name());
state.push1(old);
}
Operator::I32AtomicRmw16UXor { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i16_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Xor,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i32_ty, &state.var_name());
state.push1(old);
}
Operator::I32AtomicRmwXor { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Xor,
effective_address,
value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
state.push1(old);
}
Operator::I64AtomicRmw8UXor { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i8_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Xor,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmw16UXor { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i16_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Xor,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmw32UXor { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i32_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Xor,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmwXor { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i64_ptr_ty,
8,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Xor,
effective_address,
value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
state.push1(old);
}
Operator::I32AtomicRmw8UXchg { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i8_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Xchg,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i32_ty, &state.var_name());
state.push1(old);
}
Operator::I32AtomicRmw16UXchg { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i16_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Xchg,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i32_ty, &state.var_name());
state.push1(old);
}
Operator::I32AtomicRmwXchg { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Xchg,
effective_address,
value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
state.push1(old);
}
Operator::I64AtomicRmw8UXchg { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i8_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Xchg,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmw16UXchg { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i16_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Xchg,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmw32UXchg { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_value =
builder.build_int_truncate(value, intrinsics.i32_ty, &state.var_name());
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Xchg,
effective_address,
narrow_value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmwXchg { ref memarg } => {
let value = state.pop1()?.into_int_value();
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i64_ptr_ty,
8,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let old = builder
.build_atomicrmw(
AtomicRMWBinOp::Xchg,
effective_address,
value,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
state.push1(old);
}
Operator::I32AtomicRmw8UCmpxchg { ref memarg } => {
let (cmp, new) = state.pop2()?;
let (cmp, new) = (cmp.into_int_value(), new.into_int_value());
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_cmp =
builder.build_int_truncate(cmp, intrinsics.i8_ty, &state.var_name());
let narrow_new =
builder.build_int_truncate(new, intrinsics.i8_ty, &state.var_name());
let old = builder
.build_cmpxchg(
effective_address,
narrow_cmp,
narrow_new,
AtomicOrdering::SequentiallyConsistent,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder
.build_extract_value(old, 0, "")
.unwrap()
.into_int_value();
let old = builder.build_int_z_extend(old, intrinsics.i32_ty, &state.var_name());
state.push1(old);
}
Operator::I32AtomicRmw16UCmpxchg { ref memarg } => {
let (cmp, new) = state.pop2()?;
let (cmp, new) = (cmp.into_int_value(), new.into_int_value());
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_cmp =
builder.build_int_truncate(cmp, intrinsics.i16_ty, &state.var_name());
let narrow_new =
builder.build_int_truncate(new, intrinsics.i16_ty, &state.var_name());
let old = builder
.build_cmpxchg(
effective_address,
narrow_cmp,
narrow_new,
AtomicOrdering::SequentiallyConsistent,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder
.build_extract_value(old, 0, "")
.unwrap()
.into_int_value();
let old = builder.build_int_z_extend(old, intrinsics.i32_ty, &state.var_name());
state.push1(old);
}
Operator::I32AtomicRmwCmpxchg { ref memarg } => {
let (cmp, new) = state.pop2()?;
let (cmp, new) = (cmp.into_int_value(), new.into_int_value());
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let old = builder
.build_cmpxchg(
effective_address,
cmp,
new,
AtomicOrdering::SequentiallyConsistent,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_extract_value(old, 0, "").unwrap();
state.push1(old);
}
Operator::I64AtomicRmw8UCmpxchg { ref memarg } => {
let (cmp, new) = state.pop2()?;
let (cmp, new) = (cmp.into_int_value(), new.into_int_value());
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i8_ptr_ty,
1,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_cmp =
builder.build_int_truncate(cmp, intrinsics.i8_ty, &state.var_name());
let narrow_new =
builder.build_int_truncate(new, intrinsics.i8_ty, &state.var_name());
let old = builder
.build_cmpxchg(
effective_address,
narrow_cmp,
narrow_new,
AtomicOrdering::SequentiallyConsistent,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder
.build_extract_value(old, 0, "")
.unwrap()
.into_int_value();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmw16UCmpxchg { ref memarg } => {
let (cmp, new) = state.pop2()?;
let (cmp, new) = (cmp.into_int_value(), new.into_int_value());
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i16_ptr_ty,
2,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_cmp =
builder.build_int_truncate(cmp, intrinsics.i16_ty, &state.var_name());
let narrow_new =
builder.build_int_truncate(new, intrinsics.i16_ty, &state.var_name());
let old = builder
.build_cmpxchg(
effective_address,
narrow_cmp,
narrow_new,
AtomicOrdering::SequentiallyConsistent,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder
.build_extract_value(old, 0, "")
.unwrap()
.into_int_value();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmw32UCmpxchg { ref memarg } => {
let (cmp, new) = state.pop2()?;
let (cmp, new) = (cmp.into_int_value(), new.into_int_value());
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i32_ptr_ty,
4,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let narrow_cmp =
builder.build_int_truncate(cmp, intrinsics.i32_ty, &state.var_name());
let narrow_new =
builder.build_int_truncate(new, intrinsics.i32_ty, &state.var_name());
let old = builder
.build_cmpxchg(
effective_address,
narrow_cmp,
narrow_new,
AtomicOrdering::SequentiallyConsistent,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder
.build_extract_value(old, 0, "")
.unwrap()
.into_int_value();
let old = builder.build_int_z_extend(old, intrinsics.i64_ty, &state.var_name());
state.push1(old);
}
Operator::I64AtomicRmwCmpxchg { ref memarg } => {
let (cmp, new) = state.pop2()?;
let (cmp, new) = (cmp.into_int_value(), new.into_int_value());
let effective_address = resolve_memory_ptr(
builder,
intrinsics,
context,
&function,
&mut state,
&mut ctx,
memarg,
intrinsics.i64_ptr_ty,
8,
self.context_field_ptr_to_base_tbaa,
self.context_field_ptr_to_bounds_tbaa,
)?;
trap_if_misaligned(
builder,
intrinsics,
context,
&function,
memarg,
effective_address,
);
let old = builder
.build_cmpxchg(
effective_address,
cmp,
new,
AtomicOrdering::SequentiallyConsistent,
AtomicOrdering::SequentiallyConsistent,
)
.unwrap();
let old = builder.build_extract_value(old, 0, "").unwrap();
state.push1(old);
}
Operator::MemoryGrow { reserved } => {
let memory_index = MemoryIndex::new(reserved as usize);
let func_value = match memory_index.local_or_import(info) {
LocalOrImport::Local(local_mem_index) => {
let mem_desc = &info.memories[local_mem_index];
match mem_desc.memory_type() {
MemoryType::Dynamic => intrinsics.memory_grow_dynamic_local,
MemoryType::Static => intrinsics.memory_grow_static_local,
MemoryType::SharedStatic => intrinsics.memory_grow_shared_local,
}
}
LocalOrImport::Import(import_mem_index) => {
let mem_desc = &info.imported_memories[import_mem_index].1;
match mem_desc.memory_type() {
MemoryType::Dynamic => intrinsics.memory_grow_dynamic_import,
MemoryType::Static => intrinsics.memory_grow_static_import,
MemoryType::SharedStatic => intrinsics.memory_grow_shared_import,
}
}
};
let memory_index_const = intrinsics
.i32_ty
.const_int(reserved as u64, false)
.as_basic_value_enum();
let delta = state.pop1()?;
let result = builder.build_call(
func_value,
&[ctx.basic(), memory_index_const, delta],
&state.var_name(),
);
state.push1(result.try_as_basic_value().left().unwrap());
}
Operator::MemorySize { reserved } => {
let memory_index = MemoryIndex::new(reserved as usize);
let func_value = match memory_index.local_or_import(info) {
LocalOrImport::Local(local_mem_index) => {
let mem_desc = &info.memories[local_mem_index];
match mem_desc.memory_type() {
MemoryType::Dynamic => intrinsics.memory_size_dynamic_local,
MemoryType::Static => intrinsics.memory_size_static_local,
MemoryType::SharedStatic => intrinsics.memory_size_shared_local,
}
}
LocalOrImport::Import(import_mem_index) => {
let mem_desc = &info.imported_memories[import_mem_index].1;
match mem_desc.memory_type() {
MemoryType::Dynamic => intrinsics.memory_size_dynamic_import,
MemoryType::Static => intrinsics.memory_size_static_import,
MemoryType::SharedStatic => intrinsics.memory_size_shared_import,
}
}
};
let memory_index_const = intrinsics
.i32_ty
.const_int(reserved as u64, false)
.as_basic_value_enum();
let result = builder.build_call(
func_value,
&[ctx.basic(), memory_index_const],
&state.var_name(),
);
state.push1(result.try_as_basic_value().left().unwrap());
}
_ => {
return Err(CodegenError {
message: format!("Operator {:?} unimplemented", op),
});
}
}
Ok(())
}
fn finalize(&mut self) -> Result<(), CodegenError> {
let results = self.state.popn_save_extra(self.func_sig.returns().len())?;
match results.as_slice() {
[] => {
2019-05-07 11:20:18 +00:00
self.builder.as_ref().unwrap().build_return(None);
}
[(one_value, one_value_info)] => {
let builder = self.builder.as_ref().unwrap();
let intrinsics = self.intrinsics.as_ref().unwrap();
let one_value = apply_pending_canonicalization(
builder,
intrinsics,
*one_value,
*one_value_info,
);
2019-08-16 02:13:00 +00:00
builder.build_return(Some(&builder.build_bitcast(
one_value.as_basic_value_enum(),
type_to_llvm_int_only(intrinsics, self.func_sig.returns()[0]),
"return",
)));
}
_ => {
return Err(CodegenError {
message: "multi-value returns not yet implemented".to_string(),
});
}
}
Ok(())
}
}
impl From<BinaryReaderError> for CodegenError {
fn from(other: BinaryReaderError) -> CodegenError {
2019-05-01 01:11:44 +00:00
CodegenError {
message: format!("{:?}", other),
}
}
}
impl ModuleCodeGenerator<LLVMFunctionCodeGenerator, LLVMBackend, CodegenError>
for LLVMModuleCodeGenerator
{
fn new() -> LLVMModuleCodeGenerator {
2019-05-01 01:11:44 +00:00
let context = Context::create();
let module = context.create_module("module");
Target::initialize_x86(&InitializationConfig {
asm_parser: true,
asm_printer: true,
base: true,
disassembler: true,
info: true,
machine_code: true,
});
let triple = TargetMachine::get_default_triple().to_string();
let target = Target::from_triple(&triple).unwrap();
let target_machine = target
.create_target_machine(
&triple,
&TargetMachine::get_host_cpu_name().to_string(),
&TargetMachine::get_host_cpu_features().to_string(),
OptimizationLevel::Aggressive,
RelocMode::Static,
CodeModel::Large,
)
.unwrap();
module.set_target(&target);
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
2019-05-01 01:11:44 +00:00
let builder = context.create_builder();
2019-05-01 01:11:44 +00:00
let intrinsics = Intrinsics::declare(&module, &context);
2019-05-01 01:11:44 +00:00
let personality_func = module.add_function(
"__gxx_personality_v0",
intrinsics.i32_ty.fn_type(&[], false),
Some(Linkage::External),
);
module.add_global_metadata("wasmer_tbaa_root", &MetadataValue::create_node(&[]));
let tbaa_root = module.get_global_metadata("wasmer_tbaa_root")[0];
let memory = context.metadata_string("memory");
module.add_global_metadata(
"memory",
&MetadataValue::create_node(&[memory.into(), tbaa_root.into()]),
);
let memory_tbaa = module.get_global_metadata("memory")[0];
module.add_global_metadata(
"memory_memop",
&MetadataValue::create_node(&[
memory_tbaa.into(),
memory_tbaa.into(),
intrinsics.i64_zero.into(),
]),
);
let memory_tbaa = module.get_global_metadata("memory_memop")[0];
let locals = context.metadata_string("locals");
module.add_global_metadata(
"locals",
&MetadataValue::create_node(&[locals.into(), tbaa_root.into()]),
);
let locals_tbaa = module.get_global_metadata("locals")[0];
module.add_global_metadata(
"locals_memop",
&MetadataValue::create_node(&[
locals_tbaa.into(),
locals_tbaa.into(),
intrinsics.i64_zero.into(),
]),
);
let locals_tbaa = module.get_global_metadata("locals_memop")[0];
let globals = context.metadata_string("globals");
module.add_global_metadata(
"globals",
&MetadataValue::create_node(&[globals.into(), tbaa_root.into()]),
);
let globals_tbaa = module.get_global_metadata("globals")[0];
module.add_global_metadata(
"globals_memop",
&MetadataValue::create_node(&[
globals_tbaa.into(),
globals_tbaa.into(),
intrinsics.i64_zero.into(),
]),
);
let globals_tbaa = module.get_global_metadata("globals_memop")[0];
let context_field_ptr_to_base_tbaa =
context.metadata_string("context_field_ptr_to_base_tbaa");
module.add_global_metadata(
"context_field_ptr_to_base_tbaa",
&MetadataValue::create_node(&[context_field_ptr_to_base_tbaa.into(), tbaa_root.into()]),
);
let context_field_ptr_to_base_tbaa =
module.get_global_metadata("context_field_ptr_to_base_tbaa")[0];
module.add_global_metadata(
"context_field_ptr_to_base_tbaa_memop",
&MetadataValue::create_node(&[
context_field_ptr_to_base_tbaa.into(),
context_field_ptr_to_base_tbaa.into(),
intrinsics.i64_zero.into(),
]),
);
let context_field_ptr_to_base_tbaa =
module.get_global_metadata("context_field_ptr_to_base_tbaa_memop")[0];
let context_field_ptr_to_bounds_tbaa =
context.metadata_string("context_field_ptr_to_bounds_tbaa");
module.add_global_metadata(
"context_field_ptr_to_bounds_tbaa",
&MetadataValue::create_node(&[
context_field_ptr_to_bounds_tbaa.into(),
tbaa_root.into(),
]),
);
let context_field_ptr_to_bounds_tbaa =
module.get_global_metadata("context_field_ptr_to_bounds_tbaa")[0];
module.add_global_metadata(
"context_field_ptr_to_bounds_tbaa_memop",
&MetadataValue::create_node(&[
context_field_ptr_to_bounds_tbaa.into(),
context_field_ptr_to_bounds_tbaa.into(),
intrinsics.i64_zero.into(),
]),
);
let context_field_ptr_to_bounds_tbaa =
module.get_global_metadata("context_field_ptr_to_bounds_tbaa_memop")[0];
LLVMModuleCodeGenerator {
2019-05-07 11:20:18 +00:00
context: Some(context),
builder: Some(builder),
intrinsics: Some(intrinsics),
module,
functions: vec![],
2019-10-29 19:14:14 +00:00
signatures: Map::new(),
signatures_raw: Map::new(),
function_signatures: None,
func_import_count: 0,
personality_func,
2019-07-17 18:43:04 +00:00
stackmaps: Rc::new(RefCell::new(StackmapRegistry::default())),
track_state: false,
target_machine,
memory_tbaa,
locals_tbaa,
globals_tbaa,
context_field_ptr_to_base_tbaa,
context_field_ptr_to_bounds_tbaa,
}
}
fn backend_id() -> Backend {
Backend::LLVM
}
fn check_precondition(&mut self, _module_info: &ModuleInfo) -> Result<(), CodegenError> {
Ok(())
}
fn next_function(
&mut self,
2019-05-26 16:13:37 +00:00
_module_info: Arc<RwLock<ModuleInfo>>,
) -> Result<&mut LLVMFunctionCodeGenerator, CodegenError> {
// Creates a new function and returns the function-scope code generator for it.
2019-06-03 00:36:26 +00:00
let (context, builder, intrinsics) = match self.functions.last_mut() {
2019-05-07 11:20:18 +00:00
Some(x) => (
x.context.take().unwrap(),
x.builder.take().unwrap(),
x.intrinsics.take().unwrap(),
),
None => (
self.context.take().unwrap(),
self.builder.take().unwrap(),
self.intrinsics.take().unwrap(),
),
};
2019-05-01 01:11:44 +00:00
let sig_id = self.function_signatures.as_ref().unwrap()
[FuncIndex::new(self.func_import_count + self.functions.len())];
let func_sig = self.signatures_raw[sig_id].clone();
2019-05-01 01:11:44 +00:00
let function = self.module.add_function(
&format!("fn{}", self.func_import_count + self.functions.len()),
self.signatures[sig_id],
Some(Linkage::External),
);
2019-05-01 01:11:44 +00:00
function.set_personality_function(self.personality_func);
let mut state = State::new();
2019-05-07 11:20:18 +00:00
let entry_block = context.append_basic_block(&function, "entry");
let alloca_builder = context.create_builder();
alloca_builder.position_at_end(&entry_block);
2019-05-07 11:20:18 +00:00
let return_block = context.append_basic_block(&function, "return");
builder.position_at_end(&return_block);
let phis: SmallVec<[PhiValue; 1]> = func_sig
.returns()
.iter()
2019-05-07 11:20:18 +00:00
.map(|&wasmer_ty| type_to_llvm(&intrinsics, wasmer_ty))
.map(|ty| builder.build_phi(ty, &state.var_name()))
.collect();
state.push_block(return_block, phis);
2019-05-07 11:20:18 +00:00
builder.position_at_end(&entry_block);
2019-05-01 01:11:44 +00:00
let mut locals = Vec::new();
locals.extend(
function
.get_param_iter()
.skip(1)
.enumerate()
.map(|(index, param)| {
let real_ty = func_sig.params()[index];
let real_ty_llvm = type_to_llvm(&intrinsics, real_ty);
let alloca =
alloca_builder.build_alloca(real_ty_llvm, &format!("local{}", index));
2019-08-16 02:13:00 +00:00
builder.build_store(
alloca,
builder.build_bitcast(param, real_ty_llvm, &state.var_name()),
);
if index == 0 {
alloca_builder.position_before(
&alloca
.as_instruction()
.unwrap()
.get_next_instruction()
.unwrap(),
);
}
2019-05-01 01:11:44 +00:00
alloca
}),
);
let num_params = locals.len();
2019-07-17 18:43:04 +00:00
let local_func_index = self.functions.len();
let code = LLVMFunctionCodeGenerator {
state,
2019-05-07 11:20:18 +00:00
context: Some(context),
builder: Some(builder),
alloca_builder: Some(alloca_builder),
2019-05-07 11:20:18 +00:00
intrinsics: Some(intrinsics),
2019-05-01 01:11:44 +00:00
function,
func_sig: func_sig,
2019-05-01 01:11:44 +00:00
locals,
signatures: self.signatures.clone(),
2019-05-01 01:11:44 +00:00
num_params,
2019-05-03 05:14:25 +00:00
ctx: None,
2019-05-05 18:56:02 +00:00
unreachable_depth: 0,
2019-07-17 18:43:04 +00:00
stackmaps: self.stackmaps.clone(),
index: local_func_index,
opcode_offset: 0,
track_state: self.track_state,
memory_tbaa: self.memory_tbaa,
locals_tbaa: self.locals_tbaa,
globals_tbaa: self.globals_tbaa,
context_field_ptr_to_base_tbaa: self.context_field_ptr_to_base_tbaa,
context_field_ptr_to_bounds_tbaa: self.context_field_ptr_to_bounds_tbaa,
};
self.functions.push(code);
Ok(self.functions.last_mut().unwrap())
}
2019-05-06 01:11:47 +00:00
fn finalize(
2019-05-07 11:20:18 +00:00
mut self,
2019-05-06 01:11:47 +00:00
module_info: &ModuleInfo,
) -> Result<(LLVMBackend, Box<dyn CacheGen>), CodegenError> {
2019-06-03 00:36:26 +00:00
let (context, builder, intrinsics) = match self.functions.last_mut() {
2019-05-07 11:20:18 +00:00
Some(x) => (
x.context.take().unwrap(),
x.builder.take().unwrap(),
x.intrinsics.take().unwrap(),
),
None => (
self.context.take().unwrap(),
self.builder.take().unwrap(),
self.intrinsics.take().unwrap(),
),
};
self.context = Some(context);
self.builder = Some(builder);
self.intrinsics = Some(intrinsics);
generate_trampolines(
module_info,
&self.signatures,
&self.module,
2019-05-07 11:20:18 +00:00
self.context.as_ref().unwrap(),
self.builder.as_ref().unwrap(),
self.intrinsics.as_ref().unwrap(),
)
.map_err(|e| CodegenError {
message: format!("trampolines generation error: {:?}", e),
})?;
if let Some(path) = unsafe { &crate::GLOBAL_OPTIONS.pre_opt_ir } {
self.module.print_to_file(path).unwrap();
}
2019-07-08 21:10:37 +00:00
let pass_manager = PassManager::create(());
if cfg!(test) {
pass_manager.add_verifier_pass();
}
pass_manager.add_lower_expect_intrinsic_pass();
pass_manager.add_scalar_repl_aggregates_pass();
pass_manager.add_instruction_combining_pass();
pass_manager.add_cfg_simplification_pass();
pass_manager.add_type_based_alias_analysis_pass();
pass_manager.add_gvn_pass();
pass_manager.add_jump_threading_pass();
pass_manager.add_correlated_value_propagation_pass();
pass_manager.add_sccp_pass();
pass_manager.add_instruction_combining_pass();
pass_manager.add_reassociate_pass();
pass_manager.add_cfg_simplification_pass();
pass_manager.add_bit_tracking_dce_pass();
pass_manager.add_slp_vectorize_pass();
2019-07-08 21:10:37 +00:00
pass_manager.run_on(&self.module);
if let Some(path) = unsafe { &crate::GLOBAL_OPTIONS.post_opt_ir } {
self.module.print_to_file(path).unwrap();
}
2019-07-18 18:02:15 +00:00
let stackmaps = self.stackmaps.borrow();
let (backend, cache_gen) = LLVMBackend::new(
self.module,
self.intrinsics.take().unwrap(),
&*stackmaps,
module_info,
&self.target_machine,
);
2019-05-06 01:11:47 +00:00
Ok((backend, Box::new(cache_gen)))
}
fn feed_compiler_config(&mut self, config: &CompilerConfig) -> Result<(), CodegenError> {
self.track_state = config.track_state;
Ok(())
}
fn feed_signatures(&mut self, signatures: Map<SigIndex, FuncSig>) -> Result<(), CodegenError> {
self.signatures = signatures
.iter()
2019-05-07 11:20:18 +00:00
.map(|(_, sig)| {
func_sig_to_llvm(
self.context.as_ref().unwrap(),
self.intrinsics.as_ref().unwrap(),
sig,
type_to_llvm_int_only,
2019-05-07 11:20:18 +00:00
)
})
.collect();
self.signatures_raw = signatures.clone();
Ok(())
}
2019-05-01 01:11:44 +00:00
fn feed_function_signatures(
&mut self,
assoc: Map<FuncIndex, SigIndex>,
) -> Result<(), CodegenError> {
self.function_signatures = Some(Arc::new(assoc));
Ok(())
}
fn feed_import_function(&mut self) -> Result<(), CodegenError> {
self.func_import_count += 1;
Ok(())
}
2019-05-06 01:11:47 +00:00
2019-06-03 00:36:26 +00:00
unsafe fn from_cache(artifact: Artifact, _: Token) -> Result<ModuleInner, CacheError> {
2019-05-06 01:11:47 +00:00
let (info, _, memory) = artifact.consume();
let (backend, cache_gen) =
LLVMBackend::from_buffer(memory).map_err(CacheError::DeserializeError)?;
Ok(ModuleInner {
runnable_module: Box::new(backend),
cache_gen: Box::new(cache_gen),
info,
2019-06-03 00:36:26 +00:00
})
2019-05-06 01:11:47 +00:00
}
2019-05-01 01:11:44 +00:00
}